Minor edits
This commit is contained in:
@ -1,7 +1,7 @@
|
||||
\section{Logical Algebra}
|
||||
|
||||
\definition{}
|
||||
\textit{Logical operators} operate on the values $\{\text{True}, \text{False}\}$, \par
|
||||
\textit{Logical operators} operate on the values $\{\texttt{true}, \texttt{false}\}$, \par
|
||||
just like algebraic operators operate on numbers. \par
|
||||
In this handout, we'll use the following operators:
|
||||
\begin{itemize}
|
||||
@ -9,7 +9,7 @@ In this handout, we'll use the following operators:
|
||||
\item $\land$: and
|
||||
\item $\lor$: or
|
||||
\item $\rightarrow$: implies
|
||||
\item $()$, parenthesis.
|
||||
\item $()$: parenthesis.
|
||||
\end{itemize}
|
||||
|
||||
The function of these is defined by \textit{truth tables}:
|
||||
@ -19,10 +19,10 @@ The function of these is defined by \textit{truth tables}:
|
||||
\hline
|
||||
$A$ & $B$ & $A \land B$ \\
|
||||
\hline
|
||||
F & F & F \\
|
||||
F & T & F \\
|
||||
T & F & F \\
|
||||
T & T & T
|
||||
\texttt{F} & \texttt{F} & \texttt{F} \\
|
||||
\texttt{F} & \texttt{T} & \texttt{F} \\
|
||||
\texttt{T} & \texttt{F} & \texttt{F} \\
|
||||
\texttt{T}& \texttt{T} & \texttt{T}
|
||||
\end{tabular}
|
||||
\hfill
|
||||
\begin{tabular}{ c | c | c }
|
||||
@ -30,10 +30,10 @@ The function of these is defined by \textit{truth tables}:
|
||||
\hline
|
||||
$A$ & $B$ & $A \lor B$ \\
|
||||
\hline
|
||||
F & F & F \\
|
||||
F & T & T \\
|
||||
T & F & T \\
|
||||
T & T & T
|
||||
\texttt{F} & \texttt{F} & \texttt{F} \\
|
||||
\texttt{F} & \texttt{T} & \texttt{T} \\
|
||||
\texttt{T} & \texttt{F} & \texttt{T} \\
|
||||
\texttt{T} & \texttt{T} & \texttt{T}
|
||||
\end{tabular}
|
||||
\hfill
|
||||
\begin{tabular}{ c | c | c }
|
||||
@ -41,10 +41,10 @@ The function of these is defined by \textit{truth tables}:
|
||||
\hline
|
||||
$A$ & $B$ & $A \rightarrow B$ \\
|
||||
\hline
|
||||
F & F & T \\
|
||||
F & T & T \\
|
||||
T & F & F \\
|
||||
T & T & T
|
||||
\texttt{F} & \texttt{F} & \texttt{T} \\
|
||||
\texttt{F} & \texttt{T} & \texttt{T} \\
|
||||
\texttt{T} & \texttt{F} & \texttt{F} \\
|
||||
\texttt{T} & \texttt{T} & \texttt{T}
|
||||
\end{tabular}
|
||||
\hfill
|
||||
\begin{tabular}{ c | c }
|
||||
@ -52,8 +52,8 @@ The function of these is defined by \textit{truth tables}:
|
||||
\hline
|
||||
$A$ & $\lnot A$ \\
|
||||
\hline
|
||||
T & F \\
|
||||
F & T \\
|
||||
\texttt{T} & \texttt{F} \\
|
||||
\texttt{F} & \texttt{T} \\
|
||||
~ & ~ \\
|
||||
~ & ~ \\
|
||||
\end{tabular}
|
||||
@ -61,30 +61,40 @@ The function of these is defined by \textit{truth tables}:
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
$A \land B$ is only true if both $A$ and $B$ are true. $A \lor B$ is true when $A$ or $B$ (or both) are true. \par
|
||||
$A \land B$ is \texttt{true} only if both $A$ and $B$ are \texttt{true}. $A \lor B$ is \texttt{true} if $A$ or $B$ (or both) are \texttt{true}. \par
|
||||
$\lnot A$ is the opposite of $A$, which is why it looks like a \say{negative} sign. \par
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
$A \rightarrow B$ is a bit harder to understand. Read aloud, this is \say{$A$ implies $B$.} \par
|
||||
The only time $\rightarrow$ is false is when $T \rightarrow F$. This may seem counterintuitive, but it will make more sense as we progress through this handout.
|
||||
The only time $\rightarrow$ produces \texttt{false} is when $\texttt{true} \rightarrow \texttt{false}$.
|
||||
This fact may seem counterintuitive, but will make more sense as we progress through this handout. \par
|
||||
\hint{
|
||||
Think about it---if event $\alpha$ implies $\beta$, it is impossible for $\alpha$ to occur without $\beta$. \par
|
||||
This is the only impossibility. All other variants are valid.
|
||||
}
|
||||
|
||||
\problem{}
|
||||
Evaluate the following.
|
||||
\begin{itemize}
|
||||
\item $\lnot T$
|
||||
\item $F \lor T$
|
||||
\item $T \land T$
|
||||
\item $(T \land F) \lor T$
|
||||
\item $(T \land F) \lor T$
|
||||
\item $(\lnot (F \lor \lnot T) ) \rightarrow T$
|
||||
\item $(F \rightarrow T) \rightarrow (\lnot F \lor \lnot T)$
|
||||
\item $\lnot \texttt{T}$
|
||||
\item $\texttt{F} \lor \texttt{T}$
|
||||
\item $\texttt{T} \land \texttt{T}$
|
||||
\item $(\texttt{T} \land \texttt{F}) \lor \texttt{T}$
|
||||
\item $(\texttt{T} \land \texttt{F}) \lor \texttt{T}$
|
||||
\item $(\lnot (\texttt{F} \lor \lnot \texttt{T}) ) \rightarrow \texttt{T}$
|
||||
\item $(\texttt{F} \rightarrow \texttt{T}) \rightarrow (\lnot \texttt{F} \lor \lnot \texttt{T})$
|
||||
\end{itemize}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
\begin{instructornote}
|
||||
After the class has done a few definable set problems, you can try to provide some intuition for $\rightarrow$ with the following example.
|
||||
We can also think of $[x \geq 0] \rightarrow b$ as follows:
|
||||
if $x$ isn't the kind of object we care about, we evaluate true and
|
||||
check the next one. If $x$ \textit{is} the kind of object we care about
|
||||
and $b$ is false, we have a counterexample to $[x \geq 0] \rightarrow b$,
|
||||
and thus $\texttt{T} \rightarrow \texttt{F}$ must be false.
|
||||
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
@ -96,17 +106,13 @@ Evaluate the following.
|
||||
|
||||
If $(\text{F} \rightarrow *)$ returned false, statements like the above would be hard to write. \par
|
||||
If $x$ is negative, $\varphi$ doesn't care whether or not it has a root. In this case, $\text{F} \rightarrow *$ must be true to avoid making whole $\forall$ false.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
You can think of $[x \geq 0] \rightarrow b$ as a \say{sanity check} in a program: if $x$ isn't the kind of object we care about, return true and check the next one. If $x$ \textit{is} the kind of object we care about and $b$ is false, we have a counterexample to $[x \geq 0] \rightarrow b$, and thus $T \rightarrow F$ must be false.
|
||||
\end{instructornote}
|
||||
|
||||
|
||||
\problem{}
|
||||
Evaluate the following.
|
||||
\begin{itemize}
|
||||
\item $A \rightarrow T$ for any $A$
|
||||
\item $A \rightarrow \texttt{T}$ for any $A$
|
||||
\item $(\lnot (A \rightarrow B)) \rightarrow A$ for any $A, B$
|
||||
\item $(A \rightarrow B) \rightarrow (\lnot B \rightarrow \lnot A)$ for any $A, B$
|
||||
\end{itemize}
|
||||
@ -115,13 +121,14 @@ Evaluate the following.
|
||||
|
||||
\problem{}
|
||||
Show that $\lnot (A \rightarrow \lnot B)$ is equivalent to $A \land B$. \par
|
||||
That is, show that these give the same result for the same $A$ and $B$. \par
|
||||
That is, show that these expressions always evaluate to the same value given
|
||||
the same $A$ and $B$. \par
|
||||
\hint{Use a truth table}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Can you express $A \lor B$ using only $\lnot$, $\rightarrow$, and $()$?
|
||||
Write an expression equivalent to $A \lor B$ using only $\lnot$, $\rightarrow$, and $()$?
|
||||
|
||||
\begin{solution}
|
||||
$((\lnot A) \rightarrow B)$
|
||||
@ -131,6 +138,6 @@ Can you express $A \lor B$ using only $\lnot$, $\rightarrow$, and $()$?
|
||||
|
||||
Note that both $\land$ and $\lor$ can be defined using the other logical symbols. \par
|
||||
The only logical symbols we \textit{need} are $\lnot$, $\rightarrow$, and $()$. \par
|
||||
We include $\land$ and $\lor$ to simplify our logical expressions.
|
||||
We include $\land$ and $\lor$ to simplify our expressions.
|
||||
|
||||
\pagebreak
|
@ -9,27 +9,31 @@ A \textit{universe} is a set of meaningless objects. Here are a few examples:
|
||||
\end{itemize}
|
||||
|
||||
\definition{}
|
||||
A \textit{structure} consists of a universe $U$ and a set of symbols. \par
|
||||
A \textit{structure} consists of a universe and a set of \textit{symbols}. \par
|
||||
A structure's symbols give meaning to the objects in its universe.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
Symbols come in three types:
|
||||
\begin{itemize}
|
||||
\item Constant symbols, which let us specify specific elements of our universe. \par
|
||||
\item \textit{Constant symbols}, which let us specify specific elements of our universe. \par
|
||||
Examples: $0, 1, \frac{1}{2}, \pi$
|
||||
\vspace{2mm}
|
||||
|
||||
\item Function symbols, which let us navigate between elements of our universe. \par
|
||||
Examples: $+, \times, \sin{x}, \sqrt{x}$
|
||||
\item \textit{Function symbols}, which let us navigate between elements of our universe. \par
|
||||
Examples: $+, \times, \sin{x}, \sqrt{x}$ \par
|
||||
\note{In this handout, symbols we usually call \say{operators} are also called functions. \par
|
||||
The only difference between $a + b$ and $+(a, b)$ is notation.}
|
||||
\vspace{2mm}
|
||||
|
||||
\item Relation symbols, which let us compare elements of our universe. \par
|
||||
\item \textit{Relation symbols}, which let us compare elements of our universe. \par
|
||||
Examples: $<, >, \leq, \geq$ \par
|
||||
\vspace{2mm}
|
||||
\end{itemize}
|
||||
|
||||
The equality check $=$ is \textbf{not} a relation symbol. It is included in every structure by default.
|
||||
The equality check $=$ is \textbf{not} a relation symbol. It is included in every structure by default. \par
|
||||
By definition, $a = b$ is true if and only if $a$ and $b$ are the same element of our universe.
|
||||
|
||||
|
||||
\vspace{3mm}
|
||||
|
||||
@ -42,7 +46,7 @@ $$
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
This is a structure with the universe $\mathbb{Z}$ that contains the following symbols:
|
||||
This is a structure over the universe $\mathbb{Z}$ that provides the following symbols:
|
||||
\begin{itemize}
|
||||
\item Constants: \tab $\{0, 1\}$
|
||||
\item Functions: \tab $\{+, -\}$
|
||||
@ -51,24 +55,37 @@ This is a structure with the universe $\mathbb{Z}$ that contains the following s
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
If we look at our set of constant symbols, we see that the only integers we can directly refer to in this structure are 0 and 1. If we want any others, we must define them using the tools this structure offers.
|
||||
If we look at our set of constant symbols, we see that the only integers
|
||||
we can directly refer to in this structure are 0 and 1. If we want any
|
||||
others, we must define them using the tools this structure offers.
|
||||
|
||||
\vspace{1mm}
|
||||
\vspace{2mm}
|
||||
|
||||
To \say{define} an element of a set, we need to write a sentence that is only true for that element. For example, if we want to define 2 in the structure above, we could use the sentence $\varphi(x) = [1 + 1 = x]$. \par
|
||||
Clearly, this is only true when $x = 2$.
|
||||
To \say{define} an element of a set, we need to write a sentence that is only true for that element. \par
|
||||
For example, if we want to define 2 in the structure above, \par
|
||||
we could use the sentence \say{$2$ is the $x$ that satisfies $[1 + 1 = x]$.} \par
|
||||
This is a valid definition because $2$ is the \textbf{only} element of $\mathbb{Z}$ for which $[1 + 1 = x]$
|
||||
evaluates to \texttt{true}.
|
||||
|
||||
|
||||
\problem{}
|
||||
Define $-1$ in $\Bigl( \mathbb{Z} ~\big|~ \{0, 1, +, -, <\} \Bigr)$.
|
||||
|
||||
\begin{solution}
|
||||
The sentences \say{$x$ where $[x + 1 = 0]$} and \say{$x$ where $[0 - 1 = x]$} both work.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
|
||||
|
||||
Let us formalize what we found in the previous two problems. \par
|
||||
|
||||
\definition{}
|
||||
A \textit{formula} in a structure $S$ is a well-formed string of constants, functions, and relations. \par
|
||||
\definition{Formulas}
|
||||
A \textit{formula} in a structure $S$ is a well-formed string
|
||||
of constants, functions, relations, \par and logical operators.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
@ -77,15 +94,20 @@ For the sake of time, I will not provide a formal definition. It isn't particula
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
As a quick example, the formula $\phi(x) = [1 + 1 = x]$ evaluates to \texttt{true} when $x$ is 2 \par
|
||||
and to \texttt{false} otherwise.
|
||||
|
||||
|
||||
\definition{Free Variables}
|
||||
A formula can contain one or more \textit{free variables.} These are denoted $\varphi{(a, b, ...)}$. \par
|
||||
Formulas with free variables let us define \say{properties} that certain objects have. \par
|
||||
|
||||
For example, $x$ is a free variable in the formula $\varphi(x) = [x > 0]$. \par
|
||||
$\varphi(3)$ is true and $\varphi(-3)$ is false. \par
|
||||
For example, $x$ is a free variable in the formula above. \par
|
||||
$\varphi(2)$ is \texttt{true} and $\varphi(-3)$ is \texttt{false}. \par
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
This \say{free variable} notation is much like the function notation you are used to: \par
|
||||
This \say{free variable} notation is much like the function notation we are used to: \par
|
||||
$\varphi(x) = [x > 0]$ is similar to $f(x) = x + 1$, since the values of $\varphi(x)$ and $f(x)$ depend on $x$.
|
||||
|
||||
|
||||
|
@ -4,12 +4,14 @@ Recall the logical symbols we introduced earlier: $(), \land, \lor, \lnot, \righ
|
||||
We will now add two more: $\forall$ (for all) and $\exists$ (exists).
|
||||
|
||||
\definition{}
|
||||
$\forall$ and $\exists$ are \textit{quantifiers}. They allow us to make statements about arbitrary symbols.
|
||||
$\forall$ and $\exists$ are \textit{quantifiers}. They allow us to make statements about arbitrary symbols. \par
|
||||
\hint{Quantifiers are aptly named: they tell us \textit{how many} symbols satisfy a certain sentence.}
|
||||
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
Let's look at $\forall$ first. Let $\varphi(x)$ be a formula. \par
|
||||
Then, the formula $\forall x ~ \varphi(x)$ says \say{$\varphi$ is true for all possible $x$.}
|
||||
Let's look at $\forall$ first. If $\varphi(x)$ is a formula, \par
|
||||
the formula $\forall x ~ \varphi(x)$ is true only if $\varphi$ is true for all $x$ in our universe.
|
||||
|
||||
\vspace{1mm}
|
||||
|
||||
@ -18,8 +20,8 @@ In English, this means \say{For any $x$, $x$ is bigger than zero,} or simply \sa
|
||||
|
||||
\vspace{3mm}
|
||||
|
||||
$\exists$ is very similar: the formula $\exists x ~ \varphi(x)$ states that there is at least one $x$ that makes $\varphi$ true. \par
|
||||
For example, $\exists ~ (0 < x)$ means \say{there is a positive number in our set}.
|
||||
$\exists$ is very similar: the formula $\exists x ~ \varphi(x)$ is true if ther is at least one $x$ for which $\varphi(x)$ is true. \par
|
||||
For example, $\exists ~ (0 < x)$ means \say{there is a positive number in our set.}
|
||||
|
||||
\vspace{4mm}
|
||||
|
||||
@ -64,7 +66,7 @@ What's the difference between $\exists x ~ \forall y ~ (x \leq y)$ and $\forall
|
||||
\hint{In $\mathbb{R}^+$, the first is false and the second is true. $\mathbb{R}^+$ does not contain zero.}
|
||||
|
||||
\begin{solution}
|
||||
If $\exists x$ is inside $\forall y$, $x$ depends on $y$. We can have a different value of $x$ for every $y$. \par
|
||||
If $\exists x$ is inside $\forall y$, $x$ depends on $y$. We may pick a different value of $x$ for every $y$. \par
|
||||
If $\exists x$ is outside, $x$ is fixed \textit{before} we check all $y$.
|
||||
\end{solution}
|
||||
|
||||
@ -98,10 +100,10 @@ Define $-1$ in $\Bigl( \mathbb{Z} ~\big|~ \{0, <\} \Bigr)$
|
||||
|
||||
\problem{}
|
||||
Let $\varphi(x)$ be a formula. \par
|
||||
Define $(\forall x ~ \varphi(x))$ using logical symbols and $\exists$.
|
||||
Write a formula equivalent to $[~ \forall x ~ \varphi(x) ~]$ using only logical symbols and $\exists$.
|
||||
|
||||
\begin{solution}
|
||||
$\Bigl(\forall x ~ \varphi(x)\Bigr)$ is true iff $\lnot \Bigl(\exists x ~ \lnot \varphi(x) \Bigr)$ is true.
|
||||
$[~ \forall x ~ \varphi(x) ~]$ is true if and only if $[~ \lnot \exists x ~ \lnot \varphi(x) ~]$ is true.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
@ -3,37 +3,40 @@
|
||||
Armed with $(), \land, \lor, \lnot, \rightarrow, \forall,$ and $\exists$, we have enough tools to define sets.
|
||||
|
||||
\definition{Set-Builder Notation}
|
||||
Say we have a condition $c$. \par
|
||||
The set of all elements that satisfy that condition can be written as follows:
|
||||
$$
|
||||
\{ x ~|~ \text{$c$ is true} \}
|
||||
$$
|
||||
This is read \say{The set of $x$ where $c$ is true} or \say{The set of $x$ that satisfy $c$.}
|
||||
Say we have a sentence $\varphi(x)$. \par
|
||||
The set of all elements that satisfy that sentence can be written as follows:
|
||||
\begin{equation*}
|
||||
\{ x ~|~ \varphi(x) \}
|
||||
\end{equation*}
|
||||
This is read \say{The set of $x$ where $\varphi$ is true} or \say{The set of $x$ that satisfy $\varphi$.}
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
For example, take the formula $\varphi(x) = \exists y ~ (y + y = x)$. \par
|
||||
The set of all even integers can then be written
|
||||
The set of all even integers can then be written as
|
||||
$$
|
||||
\{ x ~|~ \varphi(x) \} = \{ x ~|~ \exists y ~ (y + y = x) \}
|
||||
\{ x ~|~ \exists y ~ (y + y = x) \}
|
||||
$$
|
||||
|
||||
\definition{Definable Sets}
|
||||
Let $S$ be a structure with a universe $U$. \par
|
||||
We say a subset $M$ of $U$ is \textit{definable} if we can write a formula that is true for some $x$ iff $x \in M$.
|
||||
We say a subset $M$ of $U$ is \textit{definable} if we
|
||||
can write a formula that is true for some $x$ iff $x \in M$.
|
||||
|
||||
\vspace{4mm}
|
||||
|
||||
For example, consider the structure $\Bigl( \mathbb{Z} ~\big|~ \{+\} \Bigr)$ \par
|
||||
|
||||
\vspace{2mm}
|
||||
For example, consider the structure $\big\langle~ \mathbb{Z} ~\big|~ \{+\} ~\big\rangle$ \par
|
||||
|
||||
Only even numbers satisfy the formula $\varphi(x) = \exists y ~ (y + y = x)$, \par
|
||||
So we can define \say{the set of even numbers} as $\{ x ~|~ \exists y ~ (y + y = x) \}$. \par
|
||||
so we can define \say{the set of even numbers} as $\{ x ~|~ \exists y ~ (y + y = x) \}$. \par
|
||||
Remember---we can only use symbols that are available in our structure!
|
||||
|
||||
\problem{}
|
||||
Is the empty set definable in any structure?
|
||||
When is the empty set definable?
|
||||
|
||||
\begin{solution}
|
||||
Always: $\{ x ~|~ \lnot (x = x) \}$
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
@ -44,31 +47,22 @@ Define $\{0, 1\}$ in $\Bigl( \mathbb{Z}^+_0 ~\big|~ \{<\} \Bigr)$
|
||||
\begin{instructornote}
|
||||
Here's an interesting fact:
|
||||
|
||||
A finite set of definable elements is always definable. Why? \par
|
||||
An infinite set of definable elements may not be definable.
|
||||
A finite set of definable elements is always definable. \note{(Why?)} \par
|
||||
An infinite set of definable elements might not be definable.
|
||||
\end{instructornote}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Define the set of prime numbers in $\Bigl( \mathbb{Z} ~\big|~ \{\times, \div, <\} \Bigr)$
|
||||
\vfill
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
\problem{}
|
||||
Define the set of nonreal numbers in $\Bigl( \mathbb{C} ~\big|~ \{\text{real}(z)\} \Bigr)$ \par
|
||||
|
||||
\hint{$\text{real}(z)$ gives the real part of a complex number: $\text{real}(3 + 2i) = 3$}
|
||||
\hint{$z$ is nonreal if $x \in \mathbb{C}$ and $x \notin \mathbb{R}$}
|
||||
|
||||
\begin{solution}
|
||||
$\Bigl\{ x ~\bigl|~ \text{real}(x) \neq x \Bigr\}$
|
||||
\end{solution}
|
||||
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
\problem{}
|
||||
@ -77,7 +71,7 @@ Define $\mathbb{R}^+_0$ in $\Bigl( \mathbb{R} ~\big|~ \{\times\} \Bigr)$ \par
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Let $\bigtriangleup$ be a relational symbol. $a \bigtriangleup b$ holds iff $a$ divides $b$. \par
|
||||
Let $\bigtriangleup$ be a relational symbol. $a \bigtriangleup b$ is true if and only if $a$ divides $b$. \par
|
||||
Define the set of prime numbers in $\Bigl( \mathbb{Z}^+ ~\big|~ \{ \bigtriangleup \} \Bigr)$ \par
|
||||
|
||||
\vfill
|
||||
@ -93,7 +87,7 @@ Define $\mathbb{Z}^+_0$ in $\Bigl( \mathbb{Z} ~\big|~ \{\times, +\} \Bigr)$
|
||||
\problem{}
|
||||
Define $<$ in $\Bigl( \mathbb{Z} ~\big|~ \{\times, +\} \Bigr)$ \par
|
||||
\hint{We can't formally define a relation yet. Don't worry about that for now. \\
|
||||
You can repharase this question as \say{given $a,b \in \mathbb{Z}$, can you write a sentence that is true iff $a < b$?}}
|
||||
You can repharase this question as \say{given $a,b \in \mathbb{Z}$,\\*/ write a sentence that is only true if $a < b$?}}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
@ -111,20 +105,24 @@ Define $\{-2, 2\}$ in $S$.
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Let $P$ be the set of all subsets of $\mathbb{Z}^+_0$. This is called a \textit{power set}. \par
|
||||
Let $S$ be the structure $( P ~|~ \{\subseteq\})$ \par
|
||||
Let $\mathcal{P}$ be the set of all subsets of $\mathbb{Z}^+_0$. This is called the \textit{power set} of $\mathbb{Z}^+_0$. \par
|
||||
Let $S$ be the structure $( \mathcal{P} ~|~ \{\subseteq\})$ \par
|
||||
|
||||
\problempart{}
|
||||
Show that the empty set is definable in $S$. \par
|
||||
\hint{Defining $\{\}$ with $\{x ~|~ x \neq x\}$ is \textbf{not} what we need here. \\
|
||||
We need $\varnothing \in P$, the \say{empty set} element in the power set of $\mathbb{Z}^+_0$.}
|
||||
We need $\varnothing \in \mathcal{P}$, the \say{empty set} element in the power set of $\mathbb{Z}^+_0$.}
|
||||
|
||||
\vfill
|
||||
|
||||
\problempart{}
|
||||
Let $x \Bumpeq y$ be a relation on $P$. $x \Bumpeq y$ holds if $x \cap y \neq \{\}$. \par
|
||||
Let $x \Bumpeq y$ be a relation on $\mathcal{P}$. $x \Bumpeq y$ holds if $x \cap y \neq \{\}$. \par
|
||||
Show that $\Bumpeq$ is definable in $S$.
|
||||
|
||||
\vfill
|
||||
|
||||
\problempart{}
|
||||
Let $f$ be a function on $P$ defined by $f(x) = \mathbb{Z}^+_0 - x$. This is called the \textit{complement} of the set $x$. \par
|
||||
Let $f$ be the function on $\mathcal{P}$ defined by $f(x) = \mathbb{Z}^+_0 - x$. This is called the \textit{complement} of $x$. \par
|
||||
Show that $f$ is definable in $S$.
|
||||
|
||||
\vfill
|
||||
|
@ -7,7 +7,7 @@ This is read \say{$S$ satisfies $\varphi$}
|
||||
|
||||
\definition{}
|
||||
Let $S$ and $T$ be structures. \par
|
||||
We say $S$ and $T$ are \textit{equivalent} and write $S \equiv T$ if for any formula $\varphi$, $S \models \varphi \Longleftrightarrow T \models \varphi$. \par
|
||||
We say $S$ and $T$ are \textit{equivalent} (and write $S \equiv T$) if for any formula $\varphi$, $S \models \varphi \Longleftrightarrow T \models \varphi$. \par
|
||||
If $S$ and $T$ are not equivalent, we write $S \not\equiv T$.
|
||||
|
||||
\problem{}
|
||||
|
Reference in New Issue
Block a user