Removed linear handout

This commit is contained in:
Mark 2023-12-09 18:17:57 -08:00
parent 23f9d100ef
commit f5fe2c3f96
Signed by: Mark
GPG Key ID: C6D63995FE72FD80
6 changed files with 0 additions and 659 deletions

View File

@ -1,71 +0,0 @@
% use [nosolutions] flag to hide solutions.
% use [solutions] flag to show solutions.
\documentclass[
solutions,
hidewarning,
%singlenumbering
]{../../resources/ormc_handout}
\usepackage{../../resources/macros}
%\usepackage{lua-visual-debug}
\usepackage{tikz-3dplot}
\usetikzlibrary{
quotes,
angles,
matrix,
decorations.pathreplacing,
calc,
positioning,
fit
}
\input{tikzset}
\uptitlel{Advanced 2}
\uptitler{Spring 2023}
\title{Linear Algebra 101}
\subtitle{Prepared by \githref{Mark} on \today}
\begin{document}
\maketitle
\input{parts/0 notation}
\input{parts/1 vectors}
\input{parts/2 dotprod}
\input{parts/3 matrices}
\section{Bonus}
\problem{}
Show that the euclidean norm satisfies the triangle inequalty:
$$
||x+y|| \leq ||x|| + ||y||
$$
\vfill
\problem{}
Show that the eucidean norm satisfies the reverse triangle inequality:
$$
||x-y|| \geq |~||x|| - ||y||~|
$$
\vfill
\problem{}
Prove the Cauchy-Schwartz inequality:
$$
||x \cdot y|| \leq ||x||~||y||
$$
\vfill
\end{document}

View File

@ -1,87 +0,0 @@
\section{Notation and Terminology}
\definition{}
\begin{itemize}
\item $\mathbb{R}$ is the set of all real numbers.
\item $\mathbb{R}^+$ is the set of positive real numbers. Zero is not positive.
\item $\mathbb{R}^+_0$ is the set of positive real numbers and zero.
\end{itemize}
Mathematicians are often inconsistent with their notation. Depending on the author, their mood, and the phase of the moon, $\mathbb{R}^+$ may or may not include zero. We will use the definitions above.
\definition{}
Consider two sets $A$ and $B$. The set $A \times B$ consists of all tuples $(a, b)$ where $a \in A$ and $b \in B$. \\
For example, $\{1, 2, 3\} \times \{\heartsuit, \star\} = \{(1,\heartsuit), (1, \star), (2,\heartsuit), (2, \star), (3,\heartsuit), (3, \star)\}$ \\
This is called the \textit{cartesian product}.
\vspace{4mm}
You can think of this as placing the two sets \say{perpendicular} to one another:
\begin{center}
\begin{tikzpicture}[
scale=1,
bullet/.style={circle,inner sep=1.5pt,fill}
]
\draw[->] (-0.2,0) -- (4,0) node[right]{$A$};
\draw[->] (0,-0.2) -- (0,3) node[above]{$B$};
\draw (1,0.1) -- ++ (0,-0.2) node[below]{$1$};
\draw (2,0.1) -- ++ (0,-0.2) node[below]{$2$};
\draw (3,0.1) -- ++ (0,-0.2) node[below]{$3$};
\draw (0.1, 1) -- ++ (-0.2, 0) node[left]{$\heartsuit$};
\draw (0.1, 2) -- ++ (-0.2, 0) node[left]{$\star$};
\node[bullet] at (1, 1){};
\node[bullet] at (2, 1) {};
\node[bullet] at (3, 1) {};
\node[bullet] at (1, 2) {};
\node[bullet] at (2, 2) {};
\node[bullet] at (3, 2) {};
\draw[rounded corners] (0.5, 0.5) rectangle (3.5, 2.5) {};
\node[above] at (2, 2.5) {$A \times B$};
\end{tikzpicture}
\end{center}
\problem{}
Let $A = \{0, 1\} \times \{0, 1\}$ \\
Let $B = \{ a, b\}$ \\
What is $A \times B$?
\vfill
\problem{}
What is $\mathbb{R} \times \mathbb{R}$? \\
\hint{Use the \say{perpendicular} analogy}
\vfill
\pagebreak
\definition{}
$\mathbb{R}^n$ is the set of $n$-tuples of real numbers. \\
In English, this means that an element of $\mathbb{R}^n$ is a list of $n$ real numbers: \\
\vspace{4mm}
Elements of $\mathbb{R}^2$ look like $(a, b)$, where $a, b \in \mathbb{R}$. \hfill \note{\textit{Note:} $\mathbb{R}^2$ is pronounced \say{arrgh-two.}}
Elements of $\mathbb{R}^5$ look like $(a_1, a_2, a_3, a_4, a_5)$, where $a_n \in \mathbb{R}$. \\
$\mathbb{R}^1$ and $\mathbb{R}$ are identical.
\vspace{4mm}
Intuitively, $\mathbb{R}^2$ forms a two-dimensional plane, and $\mathbb{R}^3$ forms a three-dimensional space. \\
$\mathbb{R}^n$ is hard to visualize when $n \geq 4$, but you are welcome to try.
\problem{}
Convince yourself that $\mathbb{R} \times \mathbb{R}$ is $\mathbb{R}^2$. \\
What is $\mathbb{R}^2 \times \mathbb{R}$?
\vfill
\pagebreak

View File

@ -1,88 +0,0 @@
\section{Vectors}
\definition{}
Elements of $\mathbb{R}^n$ are often called \textit{vectors}. \\
As you may already know, we have a few operations on vectors:
\begin{itemize}
\item Vector addition: $[a_1, a_2] + [b_1, b_2] = [a_1+b_1, a_2+b_2]$
\item Scalar multiplication: $x \times [a_1, a_2] = [xa_1, xa_2]$.
\end{itemize}
\note{
The above examples are for $\mathbb{R}^2$, and each vector thus has two components. \\
These operations are similar for all other $n$.
}
\problem{}
Compute the following or explain why you can't:
\begin{itemize}
\item $[1, 2, 3] - [1, 3, 4]$ \note{Subtraction works just like addition.}
\item $4 \times [5, 2, 4]$
\item $a + b$, where $a \in \mathbb{R}
^5$ and $b \in \mathbb{R}^7$
\end{itemize}
\vfill
\problem{}
Consider $(2, -1)$ and $(3, 1)$ in $\mathbb{R}^2$. \\
Can you develop geometric intuition for their sum and difference?
\begin{center}
\begin{tikzpicture}[scale=1]
\draw[->]
(0,0) coordinate (o) -- node[below left] {$(2, -1)$}
(2, -1) coordinate (a)
;
\draw[->]
(a) -- node[below right] {$(3, 1)$}
(5, 0) coordinate (b)
;
\draw[
draw = gray,
text = gray,
->
]
(o) -- node[above] {$??$}
(b) coordinate (s)
;
\end{tikzpicture}
\end{center}
\vfill
\pagebreak
\definition{Euclidean Norm}
A \textit{norm} on $\mathbb{R}^n$ is a map from $\mathbb{R}^n$ to $\mathbb{R}^+_0$ \\
Usually, one thinks of a norm as a way of measuring \say{length} in a vector space. \\
The norm of a vector $v$ is written $||v||$. \\
\vspace{2mm}
We usually use the \textit{Euclidean norm} when we work in $\mathbb{R}^n$. \\
If $v \in \mathbb{R}^n$, the Euclidean norm is defined as follows: \\
If $v = [v_1, v_2, ..., v_n]$,
$$
||v|| = \sqrt{v_1^2 + v_2^2 + ... + v_n^2}
$$
This is simply an application of the Pythagorean theorem.
\problem{}
Compute the euclidean norm of
\begin{itemize}
\item $[2, 3]$
\item $[-2, 1, -4, 2]$
\end{itemize}
\vfill
\problem{}
Show that $a \cdot a$ is $||a||^2$.
\vfill
\pagebreak

View File

@ -1,93 +0,0 @@
\section{Dot Products}
\definition{}
We can also define the \textit{dot product} of two vectors.\footnotemark{} \\
The dot product maps two elements of $\mathbb{R}^n$ to one element of $\mathbb{R}$:
\footnotetext{
\textbf{Bonus content. Feel free to skip.}
Formally, we would say that the dot product is a map from $\mathbb{R}^n \times \mathbb{R}^n$ to $\mathbb{R}$. Why is this reasonable?
\vspace{2mm}
It's also worth noting that a function $f$ from $X$ to $Y$ can be defined as a subset of $X \times Y$, where for all $x \in X$ there exists a unique $y \in Y$ so that $(x, y) \in f$. Try to make sense of this definition.
}
$$
a \cdot b = \sum_{i = 1}^n a_ib_i = a_1b_1 + a_2b_2 + ... + a_nb_n
$$
\problem{}
Compute $[2, 3, 4, 1] \cdot [2, 4, 10, 12]$
\vfill
\problem{}
Show that the dot product is
\begin{itemize}
\item Commutative
\item Distributive $a \cdot (b + c) = a \cdot b + a \cdot c$
\item Homogeneous: $x(a \cdot b) = xa \cdot b = a \cdot xb$ \\
\note{$x \in \mathbb{R}$, and $a, b$ are vectors.}
\item Positive definite: $a \cdot a \geq 0$, with equality iff $a = 0$ \\
\note{$a \in \mathbb{R}^n$, and $0$ is the zero vector.}
\end{itemize}
\vfill
\pagebreak
\problem{}
Say you have two vectors, $a$ and $b$. Show that $a \cdot b$ = $||a||~||b||\cos(\alpha)$, \\
where $\alpha$ is the angle between $a$ and $b$. \\
\hint{What is $c$ in terms of $a$ and $b$?}
\hint{The law of cosines is $a^2 + b^2 - 2ab\cos(\alpha) = c^2$}
\hint{The length of $a$ is $||a||$}
\begin{center}
\begin{tikzpicture}[scale=1]
\draw[->]
(0,0) coordinate (o) -- node[above left] {$a$}
(1,2) coordinate (a)
;
\draw[->]
(o) -- node[below] {$b$}
(3,0.5) coordinate (b)
;
\draw[
draw = gray,
text = gray,
-
] (a) -- node[above] {$c$} (b);
\draw
pic[
"$\alpha$",
draw = orange,
text = orange,
<->,
angle eccentricity = 1.2,
angle radius = 1cm
]
{ angle = b--o--a }
;
\end{tikzpicture}
\end{center}
\vfill
\problem{}
If $a$ and $b$ are perpendicular, what must $a \cdot b$ be? Is the converse true?
\vfill
\pagebreak

View File

@ -1,284 +0,0 @@
\section{Matrices}
\definition{}
A \textit{matrix} is a two-dimensional array of numbers: \\
$$
A =
\begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6
\end{bmatrix}
$$
The above matrix has two rows and three columns. It is thus a $2 \times 3$ matrix. \\
\vspace{1mm}
The order \say{first rows, then columns} is usually consistent in linear algebra. \\
If you look closely, you may also find it in the next definition.
\definition{}<matvec>
We can define the product of a matrix $A$ and a vector $v$:
$$
Av =
\begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6
\end{bmatrix}
\begin{bmatrix}
a \\ b \\ c
\end{bmatrix}
=
\begin{bmatrix}
1a + 2b + 3c \\
4a + 5b + 6c
\end{bmatrix}
$$
Note that each element of the resulting $2 \times 1$ matrix is the dot product of a row of $A$ with $v$:
$$
Av =
\begin{bmatrix}
\text{---} r_1 \text{---} \\
\text{---} r_2 \text{---}
\end{bmatrix}
\begin{bmatrix}
| \\
v \\
| \\
\end{bmatrix}
=
\begin{bmatrix}
r_1 \cdot v \\
r_2 \cdot v
\end{bmatrix}
$$
Naturally, a vector can only be multiplied by a matrix if the number of rows in the vector equals the number of columns in the matrix.
\problem{}
Compute the following:
$$
\begin{bmatrix}
1 & 2 \\
3 & 4 \\
5 & 6
\end{bmatrix}
\begin{bmatrix}
5 \\ 3
\end{bmatrix}
$$
\vfill
\problem{}
Say you multiply a size-$m$ vector $v$ by an $m \times n$ matrix $A$. \\
What is the size of your result $Av$?
\vfill
\pagebreak
\definition{}
We can also multiply a matrix by a matrix:
$$
AB =
\begin{bmatrix}
1 & 2 \\
3 & 4
\end{bmatrix}
\begin{bmatrix}
10 & 20 \\
100 & 200
\end{bmatrix}
=
\begin{bmatrix}
210 & 420 \\
430 & 860
\end{bmatrix}
$$
Note each element of the resulting matrix is dot product of a row of $A$ and a column of $B$:
$$
AB =
\begin{bmatrix}
\text{---} r_1 \text{---} \\
\text{---} r_2 \text{---}
\end{bmatrix}
\begin{bmatrix}
| & | \\
v_1 & v_2 \\
| & | \\
\end{bmatrix}
=
\begin{bmatrix}
r_1 \cdot v_1 & r_1 \cdot v_2 \\
r_2 \cdot v_1 & r_2 \cdot v_2 \\
\end{bmatrix}
$$
\begin{center}
\begin{tikzpicture}
\begin{scope}[layer = nodes]
\matrix[
matrix of math nodes,
left delimiter={[},
right delimiter={]}
] (A) at (0, 0){
1 & 2 \\
3 & 4 \\
};
\matrix[
matrix of math nodes,
left delimiter={[},
right delimiter={]}
] (B) at (2, 0) {
10 & 20 \\
100 & 200 \\
};
\node at (3.25, 0) {$=$};
\matrix[
matrix of math nodes,
left delimiter={[},
right delimiter={]}
] (C) at (4.5, 0) {
210 & 420 \\
430 & 860 \\
};
\end{scope}
\draw[rounded corners,fill=black!30!white,draw=none] ([xshift=-2mm,yshift=2mm]A-1-1) rectangle ([xshift=2mm,yshift=-2mm]A-1-2) {};
\draw[rounded corners,fill=black!30!white,draw=none] ([xshift=-3mm,yshift=2mm]B-1-1) rectangle ([xshift=3mm,yshift=-2mm]B-2-1) {};
\draw[rounded corners,fill=black!30!white,draw=none] ([xshift=-4mm,yshift=2mm]C-1-1) rectangle ([xshift=4mm,yshift=-2mm]C-1-1) {};
\draw[rounded corners] ([xshift=-2mm,yshift=2mm]A-2-1) rectangle ([xshift=2mm,yshift=-2mm]A-2-2) {};
\draw[rounded corners] ([xshift=-3mm,yshift=2mm]B-1-2) rectangle ([xshift=3mm,yshift=-2mm]B-2-2) {};
\draw[rounded corners] ([xshift=-4mm,yshift=2mm]C-2-2) rectangle ([xshift=4mm,yshift=-2mm]C-2-2) {};
\end{tikzpicture}
\end{center}
\problem{}
Compute the following matrix product. \\
$$
\begin{bmatrix}
1 & 2 \\
3 & 4 \\
5 & 6
\end{bmatrix}
\begin{bmatrix}
9 & 8 & 7 \\
6 & 5 & 4
\end{bmatrix}
$$
\vfill
\problem{}
Compute the following matrix product or explain why you can't.
$$
\begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6
\end{bmatrix}
\begin{bmatrix}
10 & 20 \\
30 & 40
\end{bmatrix}
$$
\vfill
\problem{}
If $A$ is an $m \times n$ matrix and $B$ is a $p \times q$ matrix, when does the product $AB$ exist?
\vfill
\pagebreak
\problem{}
Is matrix multiplication commutative? \\
\note{Does $AB = BA$ for all $A, B$? \\ You only need one counterexample to show this is false.}
\vfill
\definition{}
Say we have a matrix $A$. The matrix $A^T$, pronounced \say{A-transpose}, is created by turning rows of $A$ into columns, and columns into rows:
$$
\begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6
\end{bmatrix} ^ T
=
\begin{bmatrix}
1 & 4 \\
2 & 5 \\
3 & 6
\end{bmatrix}
$$
\problem{}
Compute the following:
\hfill
$
\begin{bmatrix}
a & b \\
c & d
\end{bmatrix} ^ T
$\hfill
$
\begin{bmatrix}
1 \\
3 \\
3 \\
7 \\
\end{bmatrix} ^ T
$\hfill
$
\begin{bmatrix}
1 & 2 & 4 & 8 \\
\end{bmatrix} ^ T
$
\hfill~
\vfill
\pagebreak
The \say{transpose} operator is often used to write column vectors in a compact way. \\
Vertical arrays don't look good in horizontal text.
\problem{}
Consider the vectors $a = [1, 4, 3]^T$ and $b = [9, 1, 4]^T$ \\
\begin{itemize}
\item Compute the dot product $a \cdot b$.
\item Can you redefine the dot product using matrix multiplication?
\end{itemize}
\note{As you may have noticed, a vector is a special case of a matrix.}
\vfill
\problem{}
A \textit{column vector} is an $m \times 1$ matrix. \\
A \textit{row vector} is a $1 \times m$ matrix. \\
We usually use column vectors. Why? \\
\hint{How does vector-matrix multiplication work?}
\vfill
\pagebreak

View File

@ -1,36 +0,0 @@
\usetikzlibrary{arrows.meta}
\usetikzlibrary{shapes.geometric}
\usetikzlibrary{patterns}
% We put nodes in a separate layer, so we can
% slightly overlap with paths for a perfect fit
\pgfdeclarelayer{nodes}
\pgfdeclarelayer{path}
\pgfsetlayers{main,nodes}
% Layer settings
\tikzset{
% Layer hack, lets us write
% later = * in scopes.
layer/.style = {
execute at begin scope={\pgfonlayer{#1}},
execute at end scope={\endpgfonlayer}
},
%
% Nodes
main/.style = {
draw,
circle,
fill = white
},
%
% Paths
path/.style = {
line width = 4mm,
draw = black,
% Lengthen paths so they're
% completely under nodes.
line cap = rect,
opacity = 0.3
}
}