Added Tectonic.toml
This commit is contained in:
		
							
								
								
									
										591
									
								
								Advanced/Introduction to Quantum/src/parts/01 bits.tex
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										591
									
								
								Advanced/Introduction to Quantum/src/parts/01 bits.tex
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,591 @@ | ||||
| \section{Probabilistic Bits} | ||||
|  | ||||
|  | ||||
| \definition{} | ||||
|  | ||||
| As we already know, a \textit{classical bit} may take the values \texttt{0} and \texttt{1}. \par | ||||
| We can model this with a two-sided coin, one face of which is labeled \texttt{0}, and the other, \texttt{1}. \par | ||||
|  | ||||
| \vspace{2mm} | ||||
|  | ||||
| Of course, if we toss such a \say{bit-coin,} we'll get either \texttt{0} or \texttt{1}. \par | ||||
| We'll denote the probability of getting \texttt{0} as $p_0$, and the probability of getting \texttt{1} as $p_1$. \par | ||||
| As with all probabilities, $p_0 + p_1$ must be equal to 1. | ||||
|  | ||||
|  | ||||
| \vfill | ||||
|  | ||||
|  | ||||
| \definition{} | ||||
|  | ||||
| Say we toss a \say{bit-coin} and don't observe the result. We now have a \textit{probabilistic bit}, with a probability $p_0$ | ||||
| of being \texttt{0}, and a probability $p_1$ of being \texttt{1}. | ||||
|  | ||||
| \vspace{2mm} | ||||
|  | ||||
| We'll represent this probabilistic bit's \textit{state} as a vector: | ||||
| $\left[\begin{smallmatrix} | ||||
| 	p_0 \\ p_1 | ||||
| \end{smallmatrix}\right]$ \par | ||||
| We do \textbf{not} assume this coin is fair, and thus $p_0$ might not equal $p_1$. | ||||
|  | ||||
| \note{ | ||||
| 	This may seem a bit redundant: since $p_0 + p_1$, we can always calculate one probability given the other. \\ | ||||
| 	We'll still include both probabilities in the state vector, since this provides a clearer analogy to quantum bits. | ||||
| } | ||||
|  | ||||
|  | ||||
| \vfill | ||||
|  | ||||
|  | ||||
| \definition{} | ||||
|  | ||||
| The simplest probabilistic bit states are of course $[0]$ and $[1]$, defined as follows: | ||||
| \begin{itemize} | ||||
| 	\item $[0] = \left[\begin{smallmatrix} 1 \\ 0 \end{smallmatrix}\right]$ | ||||
| 	\item $[1] = \left[\begin{smallmatrix} 0 \\ 1 \end{smallmatrix}\right]$ | ||||
| \end{itemize} | ||||
| That is, $[0]$ represents a bit that we known to be \texttt{0}, \par | ||||
| and $[1]$ represents a bit we know to be \texttt{1}. | ||||
|  | ||||
| \vfill | ||||
|  | ||||
|  | ||||
| \definition{} | ||||
| $[0]$ and $[1]$ form a \textit{basis} for all possible probabilistic bit states: \par | ||||
| Every other probabilistic bit can be written as a \textit{linear combination} of $[0]$ and $[1]$: | ||||
|  | ||||
| \begin{equation*} | ||||
| 	\begin{bmatrix} p_0 \\ p_1 \end{bmatrix} | ||||
| 	= | ||||
| 	p_0 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + | ||||
| 	p_1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} | ||||
| 	= | ||||
| 	p_0 [0] + p_1 [1] | ||||
| \end{equation*} | ||||
|  | ||||
|  | ||||
| \vfill | ||||
| \pagebreak | ||||
|  | ||||
| \problem{} | ||||
| Every possible state of a probabilistic bit is a two-dimensional vector. \par | ||||
| Draw all possible states on the axis below. | ||||
|  | ||||
|  | ||||
| \begin{center} | ||||
| 	\begin{tikzpicture}[scale = 2.0] | ||||
| 		\fill[color = black] (0, 0) circle[radius=0.05]; | ||||
| 		\node[below left] at (0, 0) {$\left[\begin{smallmatrix} 0 \\ 0 \end{smallmatrix}\right]$}; | ||||
|  | ||||
| 		\draw[->] (0, 0) -- (1.2, 0); | ||||
| 		\node[right] at (1.2, 0) {$p_0$}; | ||||
| 		\fill[color = oblue] (1, 0) circle[radius=0.05]; | ||||
| 		\node[below] at (1, 0) {$[0]$}; | ||||
|  | ||||
| 		\draw[->] (0, 0) -- (0, 1.2); | ||||
| 		\node[above] at (0, 1.2) {$p_1$}; | ||||
| 		\fill[color = oblue] (0, 1) circle[radius=0.05]; | ||||
| 		\node[left] at (0, 1) {$[1]$}; | ||||
| 	\end{tikzpicture} | ||||
| \end{center} | ||||
|  | ||||
| \begin{solution} | ||||
| 	\begin{center} | ||||
| 		\begin{tikzpicture}[scale = 2.0] | ||||
| 			\fill[color = black] (0, 0) circle[radius=0.05]; | ||||
| 			\node[below left] at (0, 0) {$\left[\begin{smallmatrix} 0 \\ 0 \end{smallmatrix}\right]$}; | ||||
|  | ||||
| 			\draw[ored, -, line width = 2] (0, 1) -- (1, 0); | ||||
|  | ||||
|  | ||||
| 			\draw[->] (0, 0) -- (1.2, 0); | ||||
| 			\node[right] at (1.2, 0) {$p_0$}; | ||||
| 			\fill[color = oblue] (1, 0) circle[radius=0.05]; | ||||
| 			\node[below] at (1, 0) {$[0]$}; | ||||
|  | ||||
| 			\draw[->] (0, 0) -- (0, 1.2); | ||||
| 			\node[above] at (0, 1.2) {$p_1$}; | ||||
| 			\fill[color = oblue] (0, 1) circle[radius=0.05]; | ||||
| 			\node[left] at (0, 1) {$[1]$}; | ||||
| 		\end{tikzpicture} | ||||
| 	\end{center} | ||||
| \end{solution} | ||||
|  | ||||
|  | ||||
| \vfill | ||||
| \pagebreak | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| \section{Measuring Probabilistic Bits} | ||||
|  | ||||
|  | ||||
| \definition{} | ||||
| As we noted before, a probabilistic bit represents a coin we've tossed but haven't looked at. \par | ||||
| We do not know whether the bit is \texttt{0} or \texttt{1}, but we do know the probability of both of these outcomes. \par | ||||
|  | ||||
| \vspace{2mm} | ||||
|  | ||||
| If we \textit{measure} (or \textit{observe}) a probabilistic bit, we see either \texttt{0} or \texttt{1}---and thus our | ||||
| knowledge of its state is updated to either $[0]$ or $[1]$, since we now certainly know what face the coin landed on. | ||||
|  | ||||
| \vspace{2mm} | ||||
|  | ||||
| Since measurement changes what we know about a probabilistic bit, it changes the probabilistic bit's state. | ||||
| When we measure a bit, it's state \textit{collapses} to either $[0]$ or $[1]$, and the original state of the | ||||
| bit vanishes. We \textit{cannot} recover the state $[x_0, x_1]$ from a measured probabilistic bit. | ||||
|  | ||||
|  | ||||
| \definition{Multiple bits} | ||||
| Say we have two probabilistic bits, $x$ and $y$, \par | ||||
| with states | ||||
| $[x]=[ x_0, x_1]$ | ||||
| and | ||||
| $[y]=[y_0, y_1]$ | ||||
|  | ||||
| \vspace{2mm} | ||||
|  | ||||
| The \textit{compound state} of $[x]$ and $[y]$ is exactly what it sounds like: \par | ||||
| It is the probabilistic two-bit state $\ket{xy}$, where the probabilities of the first bit are | ||||
| determined by $[x]$, and the probabilities of the second are determined by $[y]$. | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| \problem{}<firstcompoundstate> | ||||
| Say $[x] = [\nicefrac{2}{3}, \nicefrac{1}{3}]$ and $[y] = [\nicefrac{3}{4}, \nicefrac{1}{4}]$. \par | ||||
| \begin{itemize}[itemsep = 1mm] | ||||
| 	\item If we measure $x$ and $y$ simultaneously, \par | ||||
| 	what is the probability of getting each of \texttt{00}, \texttt{01}, \texttt{10}, and \texttt{11}? | ||||
|  | ||||
|  | ||||
| 	\item If we measure $y$ first and observe \texttt{1}, \par | ||||
| 	what is the probability of getting each of \texttt{00}, \texttt{01}, \texttt{10}, and \texttt{11}? | ||||
| \end{itemize} | ||||
| \note[Note]{$[x]$ and $[y]$ are column vectors, but I've written them horizontally to save space.} | ||||
|  | ||||
|  | ||||
| \vfill | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| \problem{} | ||||
| With $x$ and $y$ defined as above, find the probability of measuring each of \texttt{00}, \texttt{01}, \texttt{10}, and \texttt{11}. | ||||
|  | ||||
| \vfill | ||||
|  | ||||
| \problem{} | ||||
| Say $[x] = [\nicefrac{2}{3}, \nicefrac{1}{3}]$ and $[y] = [\nicefrac{3}{4}, \nicefrac{1}{4}]$. \par | ||||
| What is the probability that $x$ and $y$ produce different outcomes? | ||||
|  | ||||
| \vfill | ||||
| \pagebreak | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| \section{Tensor Products} | ||||
|  | ||||
| \definition{Tensor Products} | ||||
| The \textit{tensor product} of two vectors is defined as follows: | ||||
| \begin{equation*} | ||||
| 	\begin{bmatrix} | ||||
| 		x_1 \\ x_2 | ||||
| 	\end{bmatrix} | ||||
| 	\otimes | ||||
| 	\begin{bmatrix} | ||||
| 		y_1 \\ y_2 | ||||
| 	\end{bmatrix} | ||||
| = | ||||
| 	\begin{bmatrix} | ||||
| 		x_1 | ||||
| 		\begin{bmatrix} | ||||
| 			y_1 \\ y_2 | ||||
| 		\end{bmatrix} | ||||
|  | ||||
| 		\\[4mm] | ||||
|  | ||||
| 		x_2 | ||||
| 		\begin{bmatrix} | ||||
| 			y_1 \\ y_2 | ||||
| 		\end{bmatrix} | ||||
| 	\end{bmatrix} | ||||
| = | ||||
| 	\begin{bmatrix} | ||||
| 		x_1y_1 \\[1mm] | ||||
| 		x_1y_2 \\[1mm] | ||||
| 		x_2y_1 \\[1mm] | ||||
| 		x_2y_2 \\[0.5mm] | ||||
| 	\end{bmatrix} | ||||
| \end{equation*} | ||||
|  | ||||
|  | ||||
| That is, we take our first vector, multiply the second | ||||
| vector by each of its components, and stack the result. | ||||
| You could think of this as a generalization of scalar | ||||
| mulitiplication, where scalar mulitiplication is a | ||||
| tensor product with a vector in $\mathbb{R}^1$: | ||||
| \begin{equation*} | ||||
| 	a | ||||
| 	\begin{bmatrix} | ||||
| 		x_1 \\ x_2 | ||||
| 	\end{bmatrix} | ||||
| = | ||||
| 	\begin{bmatrix} | ||||
| 		a_1 | ||||
| 	\end{bmatrix} | ||||
| 	\otimes | ||||
| 	\begin{bmatrix} | ||||
| 		y_1 \\ y_2 | ||||
| 	\end{bmatrix} | ||||
| = | ||||
| 	\begin{bmatrix} | ||||
| 		a_1 | ||||
| 		\begin{bmatrix} | ||||
| 			y_1 \\ y_2 | ||||
| 		\end{bmatrix} | ||||
| 	\end{bmatrix} | ||||
| = | ||||
| 	\begin{bmatrix} | ||||
| 		a_1y_1 \\[1mm] | ||||
| 		a_1y_2 | ||||
| 	\end{bmatrix} | ||||
| \end{equation*} | ||||
|  | ||||
| \problem{} | ||||
| Say $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^m$. \par | ||||
| What is the dimension of $x \otimes y$? | ||||
|  | ||||
| \vfill | ||||
|  | ||||
| \problem{}<basistp> | ||||
| What is the pairwise tensor product | ||||
| $ | ||||
| \Bigl\{ | ||||
| 	\left[ | ||||
| 	\begin{smallmatrix} | ||||
| 		1 \\ 0 \\ 0 | ||||
| 	\end{smallmatrix} | ||||
| 	\right], | ||||
| 	\left[ | ||||
| 	\begin{smallmatrix} | ||||
| 		0 \\ 1 \\ 0 | ||||
| 	\end{smallmatrix} | ||||
| 	\right], | ||||
| 	\left[ | ||||
| 	\begin{smallmatrix} | ||||
| 		0 \\ 0 \\ 1 | ||||
| 	\end{smallmatrix} | ||||
| 	\right] | ||||
| \Bigr\} | ||||
| \otimes | ||||
| \Bigl\{ | ||||
| 	\left[ | ||||
| 	\begin{smallmatrix} | ||||
| 		1 \\ 0 | ||||
| 	\end{smallmatrix} | ||||
| 	\right], | ||||
| 	\left[ | ||||
| 	\begin{smallmatrix} | ||||
| 		0 \\ 1 | ||||
| 	\end{smallmatrix} | ||||
| 	\right] | ||||
| \Bigr\} | ||||
| $? | ||||
|  | ||||
| \note{in other words, distribute the tensor product between every pair of vectors.} | ||||
|  | ||||
| \vfill | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| \problem{} | ||||
| What is the \textit{span} of the vectors we found in \ref{basistp}? \par | ||||
| In other words, what is the set of vectors that can be written as linear combinations of the vectors above? | ||||
|  | ||||
| \vfill | ||||
|  | ||||
| Look through the above problems and convince yourself of the following fact: \par | ||||
| If $a$ is a basis of $A$ and $b$ is a basis of $B$, $a \otimes b$ is a basis of $A \times B$. \par | ||||
| \note{If you don't understand what this says, ask an instructor. \\ This is the reason we did the last few problems!} | ||||
|  | ||||
| \begin{instructornote} | ||||
| 	\textbf{The idea here is as follows:} | ||||
|  | ||||
| 	If $a$ is in $\{\texttt{0}, \texttt{1}\}$ and $b$ is in $\{\texttt{0}, \texttt{1}\}$, | ||||
| 	the values $ab$ can take are | ||||
| 	$\{\texttt{0}, \texttt{1}\} \times \{\texttt{0}, \texttt{1}\} = \{\texttt{00}, \texttt{01}, \texttt{10}, \texttt{11}\}$. | ||||
|  | ||||
| 	\vspace{2mm} | ||||
|  | ||||
| 	The same is true of any other state set: if $a$ takes values in $A$ and $b$ takes values in $B$, \par | ||||
| 	the compound state $(a,b)$ takes values in $A \times B$. | ||||
|  | ||||
| 	\vspace{2mm} | ||||
|  | ||||
| 	We would like to do the same with probabilistic bits. \par | ||||
| 	Given bits $\ket{a}$ and $\ket{b}$, how should we represent the state of $\ket{ab}$? | ||||
| \end{instructornote} | ||||
|  | ||||
| \pagebreak | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| \problem{} | ||||
| Say $[x] = [\nicefrac{2}{3}, \nicefrac{1}{3}]$ and $[y] = [\nicefrac{3}{4}, \nicefrac{1}{4}]$. \par | ||||
| What is $[x] \otimes [y]$? How does this relate to \ref{firstcompoundstate}? | ||||
|  | ||||
| \vfill | ||||
|  | ||||
|  | ||||
|  | ||||
| \problem{} | ||||
| The compound state of two vector-form bits is their tensor product. \par | ||||
| Compute the following. Is the result what we'd expect? | ||||
| \begin{itemize} | ||||
| 	\item $[0] \otimes [0]$ | ||||
| 	\item $[0] \otimes [1]$ | ||||
| 	\item $[1] \otimes [0]$ | ||||
| 	\item $[1] \otimes [1]$ | ||||
| \end{itemize} | ||||
| \hint{ | ||||
| 	Remember that | ||||
| 	$[0] = \left[\begin{smallmatrix} 1 \\ 0 \end{smallmatrix}\right]$ | ||||
| 	and | ||||
| 	$[1] = \left[\begin{smallmatrix} 0 \\ 1 \end{smallmatrix}\right]$. | ||||
| } | ||||
|  | ||||
|  | ||||
| \vfill | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| \problem{}<fivequant> | ||||
| Of course, writing $[0] \otimes [1]$ is a bit excessive. We'll shorten this notation to $[01]$. \par | ||||
|  | ||||
| \vspace{2mm} | ||||
|  | ||||
| In fact, we could go further: if we wanted to write the set of bits $[1] \otimes [1] \otimes [0] \otimes [1]$, \par | ||||
| we could write $[1101]$---but a shorter alternative is $[13]$, since $13$ is \texttt{1101} in binary. | ||||
|  | ||||
| \vspace{2mm} | ||||
|  | ||||
| Write $[5]$ as three-bit probabilistic state. \par | ||||
|  | ||||
| \begin{solution} | ||||
| 	$[5] = [101] = [1] \otimes [0] \otimes [1] = [0,0,0,0,0,1,0,0]^T$ \par | ||||
| 	Notice how we're counting from the top, with $[000] = [1,0,...,0]$ and $[111] = [0, ..., 0, 1]$. | ||||
| \end{solution} | ||||
|  | ||||
| \vfill | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| \problem{} | ||||
| Write the three-bit states $[0]$ through $[7]$ as column vectors. \par | ||||
| \hint{You do not need to compute every tensor product. Do a few and find the pattern.} | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| \vfill | ||||
| \pagebreak | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| \section{Operations on Probabilistic Bits} | ||||
|  | ||||
| Now that we can write probabilistic bits as vectors, we can represent operations on these bits | ||||
| with linear transformations---in other words, as matrices. | ||||
|  | ||||
| \definition{} | ||||
| Consider the NOT gate, which operates as follows: \par | ||||
| \begin{itemize} | ||||
| 	\item $\text{NOT}[0] = [1]$ | ||||
| 	\item $\text{NOT}[1] = [0]$ | ||||
| \end{itemize} | ||||
| What should NOT do to a probabilistic bit $[x_0, x_1]$? \par | ||||
| If we return to our coin analogy, we can think of the NOT operation as | ||||
| flipping a coin we have already tossed, without looking at it's state. | ||||
| Thus, | ||||
| \begin{equation*} | ||||
| 	\text{NOT} \begin{bmatrix} | ||||
| 		x_0 \\ x_1 | ||||
| 	\end{bmatrix} = \begin{bmatrix} | ||||
| 		x_1 \\ x_0 | ||||
| 	\end{bmatrix} | ||||
| \end{equation*} | ||||
|  | ||||
|  | ||||
| \begin{ORMCbox}{Review: Matrix Multiplication}{black!10!white}{black!65!white} | ||||
| 	Matrix multiplication works as follows: | ||||
|  | ||||
| 	\begin{equation*} | ||||
| 		AB = | ||||
| 		\begin{bmatrix} | ||||
| 			1 & 2 \\ | ||||
| 			3 & 4 \\ | ||||
| 		\end{bmatrix} | ||||
| 		\begin{bmatrix} | ||||
| 			a_0 & b_0 \\ | ||||
| 			a_1 & b_1 \\ | ||||
| 		\end{bmatrix} | ||||
| 		= | ||||
| 		\begin{bmatrix} | ||||
| 			1a_0 + 2a_1 & 1b_0 + 2b_1 \\ | ||||
| 			3a_0 + 4a_1 & 3b_0 + 4b_1 \\ | ||||
| 		\end{bmatrix} | ||||
| 	\end{equation*} | ||||
|  | ||||
|  | ||||
| 	Note that this is very similar to multiplying each column of $B$ by $A$. \par | ||||
| 	The product $AB$ is simply $Ac$ for every column $c$ in $B$: | ||||
|  | ||||
| 	\begin{equation*} | ||||
| 		Ac_0 = | ||||
| 		\begin{bmatrix} | ||||
| 			1 & 2 \\ | ||||
| 			3 & 4 \\ | ||||
| 		\end{bmatrix} | ||||
| 		\begin{bmatrix} | ||||
| 			a_0 \\ a_1 | ||||
| 		\end{bmatrix} | ||||
| 		= | ||||
| 		\begin{bmatrix} | ||||
| 			1a_0 + 2a_1 \\ | ||||
| 			3a_0 + 4a_1 | ||||
| 		\end{bmatrix} | ||||
| 	\end{equation*} | ||||
|  | ||||
| 	This is exactly the first column of the matrix product. \par | ||||
| 	Also, note that each element of $Ac_0$ is the dot product of a row in $A$ and a column in $c_0$. | ||||
| \end{ORMCbox} | ||||
|  | ||||
| \problem{} | ||||
| Compute the following product: | ||||
| \begin{equation*} | ||||
| 	\begin{bmatrix} | ||||
| 		1 & 0.5 \\ 0 & 1 | ||||
| 	\end{bmatrix} | ||||
| 	\begin{bmatrix} | ||||
| 		3 \\ 2 | ||||
| 	\end{bmatrix} | ||||
| \end{equation*} | ||||
|  | ||||
|  | ||||
| \vfill | ||||
|  | ||||
| \generic{Remark:} | ||||
| Also, recall that every matrix is linear map, and that every linear map may be written as a matrix. \par | ||||
| We often use the terms \textit{matrix}, \textit{transformation}, and \textit{linear map} interchangably. | ||||
|  | ||||
| \pagebreak | ||||
|  | ||||
|  | ||||
| \problem{} | ||||
| Find the matrix that represents the NOT operation on one probabilistic bit. | ||||
|  | ||||
| \begin{solution} | ||||
| 	\begin{equation*} | ||||
| 		\begin{bmatrix} | ||||
| 			0 & 1 \\ 1 & 0 | ||||
| 		\end{bmatrix} | ||||
| 	\end{equation*} | ||||
| \end{solution} | ||||
|  | ||||
| \vfill | ||||
|  | ||||
|  | ||||
| \problem{Extension by linearity} | ||||
| Say we have an arbitrary operation $A$. \par | ||||
| If we know how $A$ acts on $[1]$ and $[0]$, can we compute $A[x]$ for an arbitrary state $[x]$? \par | ||||
| Say $[x] = [x_0, x_1]$. | ||||
| \begin{itemize} | ||||
| 	\item What is the probability we observe $0$ when we measure $x$? | ||||
| 	\item What is the probability that we observe $M[0]$ when we measure $Mx$? | ||||
| \end{itemize} | ||||
|  | ||||
| \vfill | ||||
|  | ||||
| \problem{}<linearextension> | ||||
| Write $M[x_0, x_1]$ in terms of $M[0]$, $M[1]$, $x_0$, and $x_1$. | ||||
|  | ||||
|  | ||||
| \begin{solution} | ||||
| 	\begin{equation*} | ||||
| 		M \begin{bmatrix} | ||||
| 			x_0 \\ x_1 | ||||
| 		\end{bmatrix} | ||||
| 		= | ||||
| 		x_0 M \begin{bmatrix} | ||||
| 			1 \\ 0 | ||||
| 		\end{bmatrix} | ||||
| 		+ | ||||
| 		x_1 M \begin{bmatrix} | ||||
| 			0 \\ 1 | ||||
| 		\end{bmatrix} | ||||
| 		= | ||||
| 		x_0 M [0] + | ||||
| 		x_1 M [1] | ||||
| 	\end{equation*} | ||||
| \end{solution} | ||||
|  | ||||
|  | ||||
|  | ||||
| \vfill | ||||
|  | ||||
| \generic{Remark:} | ||||
| Every matrix represents a \textit{linear} map, so the following is always true: | ||||
| \begin{equation*} | ||||
| 	A \times (px + qy) = pAx + qAy | ||||
| \end{equation*} | ||||
| \ref{linearextension} is just a special case of this fact. | ||||
|  | ||||
| \pagebreak | ||||
							
								
								
									
										347
									
								
								Advanced/Introduction to Quantum/src/parts/02 qubit.tex
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										347
									
								
								Advanced/Introduction to Quantum/src/parts/02 qubit.tex
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,347 @@ | ||||
| \section{One Qubit} | ||||
|  | ||||
| Quantum bits (or \textit{qubits}) are very similar to probabilistic bits, but have one major difference: \par | ||||
| probabilities are replaced with \textit{amplitudes}. | ||||
|  | ||||
| \vspace{2mm} | ||||
| Of course, a qubit can take the values \texttt{0} and \texttt{1}, which are denoted $\ket{0}$ and $\ket{1}$. \par | ||||
| Like probabilistic bits, a quantum bit is written as a linear combination of $\ket{0}$ and $\ket{1}$: | ||||
| \begin{equation*} | ||||
| 	\ket{\psi} = \psi_0\ket{0} + \psi_1\ket{1} | ||||
| \end{equation*} | ||||
| Such linear combinations are called \textit{superpositions}. | ||||
|  | ||||
| \vspace{2mm} | ||||
|  | ||||
| The $\ket{~}$ you see in the expressions above is called a \say{ket,} and denotes a column vector. \par | ||||
| $\ket{0}$ is pronounced \say{ket zero,} and $\ket{1}$ is pronounced \say{ket one.} This is called bra-ket notation. \par | ||||
| \note[Note]{$\bra{0}$ is called a \say{bra,} but we won't worry about that for now.} | ||||
|  | ||||
| \vspace{2mm} | ||||
| This is very similiar to the \say{box} $[~]$ notation we used for probabilistic bits. \par | ||||
| As before, we will write $\ket{0} = \left[\begin{smallmatrix} 1 \\ 0 \end{smallmatrix}\right]$ | ||||
| and $\ket{1} = \left[\begin{smallmatrix} 0 \\ 1 \end{smallmatrix}\right]$. | ||||
|  | ||||
|  | ||||
| \vspace{8mm} | ||||
|  | ||||
| Recall that probabilistic bits are subject to the restriction that $p_0 + p_1 = 1$. \par | ||||
| Quantum bits have a similar condition: $\psi_0^2 + \psi_1^2 = 1$. \par | ||||
| Note that this implies that $\psi_0$ and $\psi_1$ are both in $[-1, 1]$. \par | ||||
| Quantum amplitudes may be negative, but probabilistic bit probabilities cannot. | ||||
|  | ||||
| \vspace{2mm} | ||||
|  | ||||
| If we plot the set of valid quantum states on our plane, we get a unit circle centered at the origin: | ||||
|  | ||||
| \begin{center} | ||||
| 	\begin{tikzpicture}[scale=1.5] | ||||
| 		\draw[dashed] (0,0) circle(1); | ||||
|  | ||||
| 		\fill[color = black] (0, 0) circle[radius=0.05]; | ||||
|  | ||||
| 		\draw[->] (0, 0) -- (1.2, 0); | ||||
| 		\fill[color = oblue] (1, 0) circle[radius=0.05]; | ||||
| 		\node[below right] at (1, 0) {$\ket{0}$}; | ||||
|  | ||||
| 		\draw[->] (0, 0) -- (0, 1.2); | ||||
| 		\fill[color = oblue] (0, 1) circle[radius=0.05]; | ||||
| 		\node[above left] at (0, 1) {$\ket{1}$}; | ||||
|  | ||||
| 		\fill[color = ored] (0.87, 0.5) circle[radius=0.05]; | ||||
| 		\node[above right] at (0.87, 0.5) {$\ket{\psi}$}; | ||||
| 	\end{tikzpicture} | ||||
| \end{center} | ||||
|  | ||||
|  | ||||
|  | ||||
| Recall that the set of probabilistic bits forms a line instead: | ||||
|  | ||||
|  | ||||
| \begin{center} | ||||
| 	\begin{tikzpicture}[scale = 1.5] | ||||
| 		\fill[color = black] (0, 0) circle[radius=0.05]; | ||||
| 		\node[below left] at (0, 0) {$\left[\begin{smallmatrix} 0 \\ 0 \end{smallmatrix}\right]$}; | ||||
|  | ||||
| 		\draw[ored, -, line width = 2] (0, 1) -- (1, 0); | ||||
|  | ||||
|  | ||||
| 		\draw[->] (0, 0) -- (1.2, 0); | ||||
| 		\node[right] at (1.2, 0) {$p_0$}; | ||||
| 		\fill[color = oblue] (1, 0) circle[radius=0.05]; | ||||
| 		\node[below] at (1, 0) {$[0]$}; | ||||
|  | ||||
| 		\draw[->] (0, 0) -- (0, 1.2); | ||||
| 		\node[above] at (0, 1.2) {$p_1$}; | ||||
| 		\fill[color = oblue] (0, 1) circle[radius=0.05]; | ||||
| 		\node[left] at (0, 1) {$[1]$}; | ||||
| 	\end{tikzpicture} | ||||
| \end{center} | ||||
|  | ||||
|  | ||||
| \problem{} | ||||
| In the above unit circle, the counterclockwise angle from $\ket{0}$ to $\ket{\psi}$ is $30^\circ$\hspace{-1ex}. \par | ||||
| Write $\ket{\psi}$ as a linear combination of $\ket{0}$ and $\ket{1}$. | ||||
|  | ||||
|  | ||||
| \vfill | ||||
| \pagebreak | ||||
|  | ||||
|  | ||||
| \definition{Measurement I} | ||||
| Just like a probabilistic bit, we must observed $\ket{0}$ or $\ket{1}$ when we measure a qubit. \par | ||||
| If we were to measure $\ket{\psi} = \psi_0\ket{0} + \psi_1\ket{1}$, we'd observe either $\ket{0}$ or $\ket{1}$, \par | ||||
| with the following probabilities: | ||||
| \begin{itemize}[itemsep = 2mm, topsep = 2mm] | ||||
| 	\item $\mathcal{P}(\ket{1}) = \psi_1^2$ | ||||
| 	\item $\mathcal{P}(\ket{0}) = \psi_0^2$ | ||||
| \end{itemize} | ||||
| \note{Note that $\mathcal{P}(\ket{0}) + \mathcal{P}(\ket{1}) = 1$.} | ||||
|  | ||||
|  | ||||
| \vspace{2mm} | ||||
|  | ||||
| As before, $\ket{\psi}$ \textit{collapses} when it is measured: its state becomes that which we observed in our measurement, | ||||
| leaving no trace of the previous superposition. \par | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| \problem{} | ||||
| \begin{itemize} | ||||
| 	\item What is the probability we observe $\ket{0}$ when we measure $\ket{\psi}$? \par | ||||
| 	\item What can we observe if we measure $\ket{\psi}$ a second time? \par | ||||
| 	\item What are these probabilities for $\ket{\varphi}$? | ||||
| \end{itemize} | ||||
|  | ||||
|  | ||||
|  | ||||
| \begin{center} | ||||
| 	\begin{tikzpicture}[scale=1.5] | ||||
| 		\draw[dashed] (0,0) circle(1); | ||||
|  | ||||
| 		\fill[color = black] (0, 0) circle[radius=0.05]; | ||||
|  | ||||
| 		\draw[->] (0, 0) -- (1.2, 0); | ||||
| 		\fill[color = oblue] (1, 0) circle[radius=0.05]; | ||||
| 		\node[below right] at (1, 0) {$\ket{0}$}; | ||||
|  | ||||
| 		\draw[->] (0, 0) -- (0, 1.2); | ||||
| 		\fill[color = oblue] (0, 1) circle[radius=0.05]; | ||||
| 		\node[above left] at (0, 1) {$\ket{1}$}; | ||||
|  | ||||
| 		\draw[dotted] (0, 0) -- (0.87, 0.5); | ||||
| 		\draw[color=gray,->] (0.5, 0.0) arc (0:30:0.5); | ||||
| 		\node[right, color=gray] at (0.47, 0.12) {$30^\circ$}; | ||||
| 		\fill[color = ored] (0.87, 0.5) circle[radius=0.05]; | ||||
| 		\node[above right] at (0.87, 0.5) {$\ket{\psi}$}; | ||||
|  | ||||
|  | ||||
| 		\draw[dotted] (0, 0) -- (-0.707, -0.707); | ||||
| 		\draw[color=gray,->] (0.25, 0.0) arc (0:-135:0.25); | ||||
| 		\node[below, color=gray] at (0.2, -0.2) {$135^\circ$}; | ||||
| 		\fill[color = ored] (-0.707, -0.707) circle[radius=0.05]; | ||||
| 		\node[below left] at (-0.707, -0.707) {$\ket{\varphi}$}; | ||||
| 	\end{tikzpicture} | ||||
| \end{center} | ||||
|  | ||||
|  | ||||
|  | ||||
| \vfill | ||||
|  | ||||
| As you may have noticed, we don't need two coordinates to fully define a quibit's state. \par | ||||
| We can get by with one coordinate just as well. | ||||
|  | ||||
| Instead of referring to each state using its cartesian coordinates $\psi_0$ and $\psi_1$, \par | ||||
| we can address it using its \textit{polar angle} $\theta$, measured from $\ket{0}$ counterclockwise: | ||||
|  | ||||
| \begin{center} | ||||
| 	\begin{tikzpicture}[scale=1.5] | ||||
| 		\draw[dashed] (0,0) circle(1); | ||||
| 		\fill[color = black] (0, 0) circle[radius=0.05]; | ||||
|  | ||||
| 		\draw[dotted] (0, 0) -- (0.707, 0.707); | ||||
| 		\draw[color=gray,->] (0.5, 0.0) arc (0:45:0.5); | ||||
| 		\node[above right, color=gray] at (0.5, 0) {$\theta$}; | ||||
|  | ||||
| 		\draw[->] (0, 0) -- (1.2, 0); | ||||
| 		\fill[color = oblue] (1, 0) circle[radius=0.05]; | ||||
| 		\node[below right] at (1, 0) {$\ket{0}$}; | ||||
|  | ||||
| 		\draw[->] (0, 0) -- (0, 1.2); | ||||
| 		\fill[color = oblue] (0, 1) circle[radius=0.05]; | ||||
| 		\node[above left] at (0, 1) {$\ket{1}$}; | ||||
|  | ||||
| 		\fill[color = ored] (0.707, 0.707) circle[radius=0.05]; | ||||
| 		\node[above right] at (0.707, 0.707) {$\ket{\psi}$}; | ||||
| 	\end{tikzpicture} | ||||
| \end{center} | ||||
|  | ||||
|  | ||||
| \problem{} | ||||
| Find $\psi_0$ and $\psi_1$ in terms of $\theta$ for an arbitrary qubit $\psi$. | ||||
|  | ||||
|  | ||||
| \vfill | ||||
| \pagebreak | ||||
|  | ||||
|  | ||||
| \problem{} | ||||
| Consider the following qubit states: | ||||
|  | ||||
| \null\hfill\begin{minipage}{0.48\textwidth} | ||||
| 	\begin{equation*} | ||||
| 		\ket{+} = \frac{\ket{0} + \ket{1}}{\sqrt{2}} | ||||
| 	\end{equation*} | ||||
| \end{minipage}\hfill\begin{minipage}{0.48\textwidth} | ||||
| 	\begin{equation*} | ||||
| 		\ket{-} = \frac{\ket{0} - \ket{1}}{\sqrt{2}} | ||||
| 	\end{equation*} | ||||
| \end{minipage}\hfill\null | ||||
|  | ||||
| \begin{itemize} | ||||
| 	\item Where are these on the unit circle? | ||||
| 	\item What are their polar angles? | ||||
| 	\item What are the probabilities of observing $\ket{0}$ and $\ket{1}$ when measuring $\ket{+}$ and $\ket{-}$? | ||||
| \end{itemize} | ||||
|  | ||||
| \vfill | ||||
|  | ||||
| \begin{center} | ||||
| 	\begin{tikzpicture}[scale = 2.5] | ||||
| 		\draw[dashed] (0,0) circle(1); | ||||
| 		\fill[color = black] (0, 0) circle[radius=0.05]; | ||||
|  | ||||
| 		\draw[->] (0, 0) -- (1.2, 0); | ||||
| 		\fill[color = oblue] (1, 0) circle[radius=0.05]; | ||||
| 		\node[below right] at (1, 0) {$\ket{0}$}; | ||||
|  | ||||
| 		\draw[->] (0, 0) -- (0, 1.2); | ||||
| 		\fill[color = oblue] (0, 1) circle[radius=0.05]; | ||||
| 		\node[above left] at (0, 1) {$\ket{1}$}; | ||||
| 	\end{tikzpicture} | ||||
| \end{center} | ||||
|  | ||||
| \vfill | ||||
| \vfill | ||||
| \pagebreak | ||||
|  | ||||
|  | ||||
| \section{Operations on One Qubit} | ||||
|  | ||||
| We may apply transformations to qubits just as we apply transformations to probabilistic bits. | ||||
| Again, we'll represent transformations as $2 \times 2$ matrices, since we want to map | ||||
| one qubit state to another. \par | ||||
| \note{In other words, we want to map elements of $\mathbb{R}^2$ to elements of $\mathbb{R}^2$.} \par | ||||
| We will call such maps \textit{quantum gates,} since they are the quantum equivalent of classical logic gates. | ||||
|  | ||||
|  | ||||
| \vspace{2mm} | ||||
|  | ||||
| There are two conditions a valid quantum gate $G$ must satisfy: | ||||
| \begin{itemize}[itemsep = 1mm] | ||||
| 	\item For any valid state $\ket{\psi}$, $G\ket{\psi}$ is a valid state. \par | ||||
| 	Namely, $G$ must preserve the length of any vector it is applied to. \par | ||||
| 	Recall that the set of valid quantum states is the set of unit vectors in $\mathbb{R}^2$ | ||||
|  | ||||
| 	\item Any quantum gate must be \textit{invertible}. \par | ||||
| 	We'll skip this condition for now, and return to it later. | ||||
| \end{itemize} | ||||
| In short, a quantum gate is a linear map that maps the unit circle to itself. \par | ||||
| There are only two kinds of linear maps that do this: reflections and rotations. | ||||
|  | ||||
| \problem{} | ||||
| The $X$ gate is the quantum analog of the \texttt{not} gate, defined by the following table: | ||||
| \begin{itemize} | ||||
| 	\item $X\ket{0} = \ket{1}$ | ||||
| 	\item $X\ket{1} = \ket{0}$ | ||||
| \end{itemize} | ||||
| Find the matrix $X$. | ||||
|  | ||||
| \begin{solution} | ||||
| 	\begin{equation*} | ||||
| 		\begin{bmatrix} | ||||
| 			0 & 1 \\ 1 & 0 | ||||
| 		\end{bmatrix} | ||||
| 	\end{equation*} | ||||
| \end{solution} | ||||
|  | ||||
| \vfill | ||||
|  | ||||
| \problem{} | ||||
| What is $X\ket{+}$ and $X\ket{-}$? \par | ||||
| \hint{Remember that all matrices are linear maps. What does this mean?} | ||||
|  | ||||
| \begin{solution} | ||||
| 	$X\ket{+} = \ket{+}$ and $X\ket{-} = -\ket{-}$ (that is, negative ket-minus). \par | ||||
| 	Most notably, remember that $G(a\ket{0} + b\ket{1}) = aG\ket{0} + bG\ket{1}$ | ||||
| \end{solution} | ||||
|  | ||||
| \vfill | ||||
|  | ||||
|  | ||||
| \problem{} | ||||
| In terms of geometric transformations, what does $X$ do to the unit circle? | ||||
|  | ||||
| \begin{solution} | ||||
| 	It is a reflection about the $45^\circ$ axis. | ||||
| \end{solution} | ||||
|  | ||||
| \vfill | ||||
| \pagebreak | ||||
|  | ||||
|  | ||||
| \problem{} | ||||
| Let $Z$ be a quantum gate defined by the following table: \par | ||||
| \begin{itemize} | ||||
| 	\item $Z\ket{0} = \ket{0}$, | ||||
| 	\item $Z\ket{1} = -\ket{1}$. | ||||
| \end{itemize} | ||||
| What is the matrix $Z$? What are $Z\ket{+}$ and $Z\ket{-}$? \par | ||||
| What is $Z$ as a geometric transformation? | ||||
|  | ||||
| \vfill | ||||
|  | ||||
| \problem{} | ||||
| Is the map $B$ defined by the table below a valid quantum gate? | ||||
| \begin{itemize} | ||||
| 	\item $B\ket{0} = \ket{0}$ | ||||
| 	\item $B\ket{1} = \ket{+}$ | ||||
| \end{itemize} | ||||
| \hint{Find a $\ket{\psi}$ so that $B\ket{\psi}$ is not a valid qubit state} | ||||
|  | ||||
| \begin{solution} | ||||
| 	$B\ket{+} = \frac{1 + \sqrt{2}}{2}\ket{0} + \frac{1}{2}\ket{1}$, which has a non-unit length of $\frac{\sqrt{2} + 1}{\sqrt{2}}$. | ||||
| \end{solution} | ||||
|  | ||||
| \vfill | ||||
|  | ||||
|  | ||||
|  | ||||
| \problem{Rotation} | ||||
| As we noted earlier, any rotation about the center is a valid quantum gate. \par | ||||
| Let's derive all transformations of this form. | ||||
| \begin{itemize}[itemsep = 1mm] | ||||
| 	\item Let $U_\phi$ be the matrix that represents a counterclockwise rotation of $\phi$ degrees. \par | ||||
| 	What is $U\ket{0}$ and $U\ket{1}$? | ||||
|  | ||||
| 	\item Find the matrix $U_\phi$ for an arbitrary $\phi$. | ||||
| \end{itemize} | ||||
|  | ||||
| \vfill | ||||
|  | ||||
|  | ||||
| \problem{} | ||||
| Say we have a qubit that is either $\ket{+}$ or $\ket{-}$. We do not know which of the two states it is in. \par | ||||
| Using one operation and one measurement, how can we find out, for certain, which qubit we received? \par | ||||
|  | ||||
| \vfill | ||||
| \pagebreak | ||||
							
								
								
									
										145
									
								
								Advanced/Introduction to Quantum/src/parts/03 two qubits.tex
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										145
									
								
								Advanced/Introduction to Quantum/src/parts/03 two qubits.tex
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,145 @@ | ||||
| \section{Two Qubits} | ||||
|  | ||||
|  | ||||
| \definition{} | ||||
| Just as before, we'll represent multi-quibit states as linear combinations of multi-qubit basis states. \par | ||||
| For example, a two-qubit state $\ket{ab}$ is the four-dimensional unit vector | ||||
| \begin{equation} | ||||
| 	\begin{bmatrix} | ||||
| 		a \\ b \\ c \\ d | ||||
| 	\end{bmatrix} | ||||
| 	= a \ket{00} + b\ket{01} + c\ket{10} + d\ket{11} | ||||
| \end{equation} | ||||
|  | ||||
| As always, multi-qubit states are unit vectors. \par | ||||
| Thus, $a^2 + b^2 + c^2 + d^2 = 1$ in the two-bit case above. | ||||
|  | ||||
|  | ||||
| \problem{} | ||||
| Say we have two qubits $\ket{\psi}$ and $\ket{\varphi}$. \par | ||||
| Show that $\ket{\psi} \otimes \ket{\varphi}$ is always a unit vector (and is thus a valid quantum state). | ||||
|  | ||||
| \vfill | ||||
|  | ||||
|  | ||||
| \definition{Measurement II}<measureii> | ||||
| Measurement of a two-qubit state works just like measurement of a one-qubit state: \par | ||||
| If we measure $a\ket{00} + b\ket{01} + c\ket{10} + d\ket{11}$, \par | ||||
| we get one of the four basis states with the following probabilities: | ||||
|  | ||||
| \begin{itemize} | ||||
| 	\item $\mathcal{P}(\ket{00}) = a^2$ | ||||
| 	\item $\mathcal{P}(\ket{01}) = b^2$ | ||||
| 	\item $\mathcal{P}(\ket{10}) = c^2$ | ||||
| 	\item $\mathcal{P}(\ket{11}) = d^2$ | ||||
| \end{itemize} | ||||
| Of course, the sum of all the above probabilities is $1$. | ||||
|  | ||||
|  | ||||
| \problem{} | ||||
| Consider the two-qubit state | ||||
| $\ket{\psi} = \frac{1}{\sqrt{2}} \ket{00} + \frac{1}{2} \ket{01} + \frac{\sqrt{3}}{4} \ket{10} + \frac{1}{4} \ket{11}$ | ||||
|  | ||||
| \begin{itemize}[itemsep=2mm] | ||||
| 	\item If we measure both bits of $\ket{\psi}$ simultaneously, \par | ||||
| 	what is the probability of getting each of $\ket{00}$, $\ket{01}$, $\ket{10}$, and $\ket{11}$? | ||||
|  | ||||
| 	\item If we measure the ONLY the first qubit, what is the probability we get $\ket{0}$? How about $\ket{1}$? \par | ||||
| 	\hint{There are two basis states in which the first qubit is $\ket{0}$.} | ||||
|  | ||||
| 	\item Say we measured the second bit and read $\ket{1}$. \par | ||||
| 	If we now measure the first bit, what is the probability of getting $\ket{0}$? | ||||
| \end{itemize} | ||||
|  | ||||
|  | ||||
|  | ||||
| \vfill | ||||
| \pagebreak | ||||
|  | ||||
| \problem{} | ||||
| Again, consider the two-qubit state | ||||
| $\ket{\psi} = \frac{1}{\sqrt{2}} \ket{00} + \frac{1}{2} \ket{01} + \frac{\sqrt{3}}{4} \ket{10} + \frac{1}{4} \ket{11}$ \par | ||||
| If we measure the first qubit of $\ket{\psi}$ and get $\ket{0}$, what is the resulting state of $\ket{\psi}$? \par | ||||
| What would the state be if we'd measured $\ket{1}$ instead? | ||||
|  | ||||
| \vfill | ||||
|  | ||||
| \problem{} | ||||
| Consider the three-qubit state $\ket{\psi} = c_0\ket{000} + c_1\ket{001} + ... + c_7 \ket{111}$. \par | ||||
| Say we measure the first two qubits and get $\ket{00}$. What is the resulting state of $\ket{\psi}$? | ||||
|  | ||||
| \begin{solution} | ||||
| 	We measure $\ket{00}$ with probability $c_0^2 + c_1^2$, and $\ket{\psi}$ collapses to | ||||
| 	\begin{equation*} | ||||
| 		\frac{c_0\ket{000} + c_1\ket{001}}{\sqrt{c_0^2 + c_1^2}} | ||||
| 	\end{equation*} | ||||
| \end{solution} | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| \vfill | ||||
| \pagebreak | ||||
|  | ||||
|  | ||||
|  | ||||
| \definition{Entanglement} | ||||
| Some product states can be factored into a tensor product of individual qubit states. For example, | ||||
| \begin{equation*} | ||||
| 	\frac{1}{2} \bigl(\ket{00} + \ket{01} + \ket{10} + \ket{11}\bigr) | ||||
| 	= \frac{1}{\sqrt{2}}\bigl( \ket{0} + \ket{1} \bigr) \otimes | ||||
| 		\frac{1}{\sqrt{2}}\bigl( \ket{0} - \ket{1} \bigr) | ||||
| \end{equation*} | ||||
| Such states are called \textit{product states.} States that aren't product states are called \textit{entangled} states. | ||||
|  | ||||
| \problem{} | ||||
| Factor the following product state: | ||||
| \begin{equation*} | ||||
| 	\frac{1}{2\sqrt{2}} \bigl(\sqrt{3}\ket{00} - \sqrt{3}\ket{01} + \ket{10} - \ket{11}\bigr) | ||||
| \end{equation*} | ||||
|  | ||||
| \begin{solution} | ||||
| 	\begin{equation*} | ||||
| 		\frac{1}{2\sqrt{2}} \biggl(\sqrt{3}\ket{00} - \sqrt{3}\ket{01} + \ket{10} - \ket{11}\biggr) | ||||
| 		= \biggl( \frac{\sqrt{3}}{2}\ket{0} + \frac{1}{2}\ket{1} \biggr) \otimes | ||||
| 		\biggl(\frac{1}{\sqrt{2}}\ket{0} - \frac{1}{\sqrt{2}}\ket{1} \biggr) | ||||
| 	\end{equation*} | ||||
| \end{solution} | ||||
|  | ||||
|  | ||||
| \vfill | ||||
|  | ||||
| \problem{} | ||||
| Show that the following is an entangled state. | ||||
| \begin{equation*} | ||||
| 	\frac{1}{\sqrt{2}}\ket{00} + \frac{1}{\sqrt{2}}\ket{11} | ||||
| \end{equation*} | ||||
|  | ||||
| \begin{solution} | ||||
| 	$ | ||||
| 	\left[ | ||||
| 	\begin{smallmatrix} | ||||
| 		a_0 \\ a_1 | ||||
| 	\end{smallmatrix} | ||||
| 	\right] | ||||
| 	\otimes | ||||
| 	\left[ | ||||
| 		\begin{smallmatrix} | ||||
| 			b_0 \\ b_1 | ||||
| 		\end{smallmatrix} | ||||
| 	\right] | ||||
| 	= | ||||
| 	a_0b_0\ket{00} + a_0b_1\ket{01} + a_1b_0\ket{10} + a_1b_1\ket{11} | ||||
| 	$ | ||||
|  | ||||
| 	\vspace{2mm} | ||||
|  | ||||
| 	So, we have that $a_1b_1 = a_0b_0 = \sqrt{2}^{-1}$ \par | ||||
| 	But $a_0b_1 = a_1b_0 = 0$, so one of $a_0$ and $b_1$ must be zero. \par | ||||
| 	We thus have a contradiction. | ||||
| \end{solution} | ||||
|  | ||||
|  | ||||
| \vfill | ||||
| \pagebreak | ||||
							
								
								
									
										311
									
								
								Advanced/Introduction to Quantum/src/parts/04 logic gates.tex
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										311
									
								
								Advanced/Introduction to Quantum/src/parts/04 logic gates.tex
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,311 @@ | ||||
| \section{Logic Gates} | ||||
|  | ||||
| \definition{Matrices} | ||||
| Throughout this handout, we've been using matrices. Again, recall that every linear map may be written as a matrix, | ||||
| and that every matrix represents a linear map. For example, if $f: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear | ||||
| map, we can write it as follows: | ||||
| \begin{equation*} | ||||
| 		f\left( | ||||
| 			\ket{x} | ||||
| 		\right) | ||||
| 	= | ||||
| 		\begin{bmatrix} | ||||
| 			m_1 & m_2 \\ | ||||
| 			m_3 & m_4 | ||||
| 		\end{bmatrix} | ||||
| 		\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} | ||||
| 	= | ||||
| 		\left[ | ||||
| 		\begin{matrix} | ||||
| 			m_1x_1 + m_2x_2 \\ | ||||
| 			m_3x_1 + m_4x_2 | ||||
| 		\end{matrix} | ||||
| 		\right] | ||||
| \end{equation*} | ||||
|  | ||||
|  | ||||
| \definition{} | ||||
| Before we discussing multi-qubit quantum gates, we need to review to classical logic. \par | ||||
| Of course, a classical logic gate is a linear map from $\mathbb{B}^m$ to $\mathbb{B}^n$ | ||||
|  | ||||
|  | ||||
| \problem{}<notgatex> | ||||
| The \texttt{not} gate is a map from $\mathbb{B}$ to $\mathbb{B}$ defined by the following table: \par | ||||
|  | ||||
| \begin{itemize} | ||||
| 	\item $X\ket{0} = \ket{1}$ | ||||
| 	\item $X\ket{1} = \ket{0}$ | ||||
| \end{itemize} | ||||
|  | ||||
| Write the \texttt{not} gate as a matrix that operates on single-bit vector states. \par | ||||
| That is, find a matrix $X$ so that | ||||
| $ | ||||
| 	X\left[\begin{smallmatrix} 1 \\ 0 \end{smallmatrix}\right] | ||||
| 	= \left[\begin{smallmatrix} 0 \\ 1 \end{smallmatrix}\right] | ||||
| $ | ||||
| and | ||||
| $ | ||||
| 	X\left[\begin{smallmatrix} 0 \\ 1 \end{smallmatrix}\right] | ||||
| 	= \left[\begin{smallmatrix} 1 \\ 0 \end{smallmatrix}\right] | ||||
| $ \par | ||||
|  | ||||
| \begin{solution} | ||||
| 	\begin{equation*} | ||||
| 		X = \begin{bmatrix} | ||||
| 			0 & 1 \\ 1 & 0 | ||||
| 		\end{bmatrix} | ||||
| 	\end{equation*} | ||||
| \end{solution} | ||||
|  | ||||
|  | ||||
| \vfill | ||||
|  | ||||
|  | ||||
| \problem{} | ||||
| The \texttt{and} gate is a map $\mathbb{B}^2 \to \mathbb{B}$ defined by the following table: | ||||
| \begin{center} | ||||
| 	\begin{tabular}{ c | c | c } | ||||
| 		\hline | ||||
| 			\texttt{a} & \texttt{b} & \texttt{a} and \texttt{b} \\ | ||||
| 		\hline | ||||
| 		0 & 0 & 0 \\ | ||||
| 		0 & 1 & 0 \\ | ||||
| 		1 & 0 & 0 \\ | ||||
| 		1 & 1 & 1 | ||||
| 	\end{tabular} | ||||
| \end{center} | ||||
|  | ||||
| Find a matrix $A$ so that $A\ket{\texttt{ab}}$ works as expected. \par | ||||
|  | ||||
|  | ||||
| \begin{solution} | ||||
| 	\begin{equation*} | ||||
| 		A = \begin{bmatrix} | ||||
| 			1 & 1 & 1 & 0 \\ | ||||
| 			0 & 0 & 0 & 1 \\ | ||||
| 		\end{bmatrix} | ||||
| 	\end{equation*} | ||||
|  | ||||
| 	\begin{instructornote} | ||||
| 		Because of the way we represent bits here, we also have the following property: \par | ||||
| 		The columns of $A$ correspond to the output for each input---i.e, $A$ is just a table of outputs. \par | ||||
|  | ||||
| 		\vspace{2mm} | ||||
| 		For example, if we look at the first column of $A$ (which is $[1, 0]$), we see: \par | ||||
| 		$A\ket{00} = A[1,0,0,0] = [1,0] = \ket{0}$ | ||||
|  | ||||
| 		\vspace{2mm} | ||||
| 		Also with the last column (which is $[0,1]$): \par | ||||
| 		$A\ket{00} = A[0,0,0,1] = [0,1] = \ket{1}$ | ||||
| 	\end{instructornote} | ||||
| \end{solution} | ||||
|  | ||||
|  | ||||
| \vfill | ||||
| \pagebreak | ||||
|  | ||||
| \generic{Remark:} | ||||
| The way a quantum circuit handles information is a bit different than the way a classical circuit does. | ||||
| We usually think of logic gates as \textit{functions}: they consume one set of bits, and return another: | ||||
|  | ||||
|  | ||||
| \begin{center} | ||||
| \begin{tikzpicture}[circuit logic US, scale=2] | ||||
| 	\node[and gate] (and) at (0,-0.8) {\tiny\texttt{and}}; | ||||
| 	\draw[->] ([shift={(-0.5, 0)}] and.input 1) node[left] {\texttt{input A}} -- ([shift={(-0.25, 0)}]and.input 1); | ||||
| 	\draw[->] ([shift={(-0.5, 0)}] and.input 2) node[left] {\texttt{input B}} -- ([shift={(-0.25, 0)}]and.input 2); | ||||
| 	\draw ([shift={(-0.25, 0)}] and.input 1) -- (and.input 1); | ||||
| 	\draw ([shift={(-0.25, 0)}] and.input 2) -- (and.input 2); | ||||
| 	\draw[->] (and.output) -- ([shift={(0.5, 0)}] and.output) node[right] {\texttt{output}}; | ||||
| \end{tikzpicture} | ||||
| \end{center} | ||||
|  | ||||
|  | ||||
| This model, however, won't work for quantum logic. If we want to understand quantum gates, we need to see them | ||||
| not as \textit{functions}, but as \textit{transformations}. This distinction is subtle, but significant: | ||||
| \begin{itemize} | ||||
| 	\item functions \textit{consume} a set of inputs and \textit{produce} a set of outputs | ||||
| 	\item transformations \textit{change} a set of objects, without adding or removing any elements | ||||
| \end{itemize} | ||||
|  | ||||
| \vspace{2mm} | ||||
|  | ||||
| Our usual logic circuit notation models logic gates as functions---we thus can't use it. \par | ||||
| We'll need a different diagram to draw quantum circuits. \par | ||||
|  | ||||
| \vfill | ||||
|  | ||||
|  | ||||
| First, we'll need a set of bits. For this example, we'll use two, drawn in a vertical array. \par | ||||
| We'll also add a horizontal time axis, moving from left to right: | ||||
|  | ||||
| \begin{center} | ||||
| \begin{tikzpicture}[scale=1] | ||||
| 	\node[qubit] (a) at (0, 0) {\texttt{0}}; | ||||
| 	\node[qubit] (b) at (0, -1) {\texttt{1}}; | ||||
|  | ||||
| 	\draw[wire] (a) -- ([shift={(4, 0)}] a.center) node[qubit] {\texttt{0}}; | ||||
| 	\draw[wire] (b) -- ([shift={(4, 0)}] b.center) node[qubit] {\texttt{1}}; | ||||
|  | ||||
| 	\draw[ | ||||
| 		color = oblue, | ||||
| 		->>, | ||||
| 		line width = 0.5mm | ||||
| 	] (-1,-1.5) -- (5, -1.5); | ||||
|  | ||||
| 	\node[fill=white, text=oblue] at (2, -1.5) {\texttt{time axis}}; | ||||
|  | ||||
|  | ||||
| 	\node[left, gray] at (-1, -0.5) {State of each bit at start}; | ||||
| 	\node[right, gray] at (5, -0.5) {State of each bit at end}; | ||||
|  | ||||
| 	\draw[ | ||||
| 		->, | ||||
| 		color = gray, | ||||
| 		line width = 0.2mm, | ||||
| 		rounded corners = 2mm | ||||
| 	] | ||||
| 		(-1, -0.5) -- (-0.8, -0.5) -- (-0.8, 0) --(a) | ||||
| 	; | ||||
| 	\draw[ | ||||
| 		->, | ||||
| 		color = gray, | ||||
| 		line width = 0.2mm, | ||||
| 		rounded corners = 2mm | ||||
| 	] | ||||
| 		(-1, -0.5) -- (-0.8, -0.5) -- (-0.8, -1) -- (b) | ||||
| 	; | ||||
|  | ||||
| 	\draw[ | ||||
| 		<-, | ||||
| 		color = gray, | ||||
| 		line width = 0.2mm, | ||||
| 		rounded corners = 2mm | ||||
| 	] | ||||
| 		(4.2, 0) -- (4.8, 0) -- (4.8, -0.5) -- (5, -0.5) | ||||
| 	; | ||||
| 	\draw[ | ||||
| 		<-, | ||||
| 		color = gray, | ||||
| 		line width = 0.2mm, | ||||
| 		rounded corners = 2mm | ||||
| 	] | ||||
| 		(4.2, -1) -- (4.8, -1) -- (4.8, -0.5) -- (5, -0.5) | ||||
| 	; | ||||
|  | ||||
| 	\end{tikzpicture} | ||||
| \end{center} | ||||
|  | ||||
| In the diagram above, we didn't change our bits---so the labels at the start match those at the end. | ||||
|  | ||||
| \vfill | ||||
|  | ||||
| Thus, our circuit forms a grid, with bits ordered vertically and time horizontally. \par | ||||
| If we want to change our state, we draw transformations as vertical boxes. \par | ||||
| Every column represents a single transformation on the entire state: | ||||
|  | ||||
| \begin{center} | ||||
| \begin{tikzpicture}[scale=1] | ||||
| 	\node[qubit] (a) at (0, 0) {\texttt{1}}; | ||||
| 	\node[qubit] (b) at (0, -1) {\texttt{0}}; | ||||
|  | ||||
| 	\draw[wire] (a) -- ([shift={(5, 0)}] a.center) node[qubit] {\texttt{0}}; | ||||
| 	\draw[wire] (b) -- ([shift={(5, 0)}] b.center) node[qubit] {\texttt{1}}; | ||||
|  | ||||
| 	\ghostqubox{a}{1}{b}{2}{$T_1$} | ||||
| 	\ghostqubox{a}{2}{b}{3}{$T_2$} | ||||
| 	\ghostqubox{a}{3}{b}{4}{$T_3$} | ||||
|  | ||||
| \end{tikzpicture} | ||||
| \end{center} | ||||
|  | ||||
| Note that the transformations above span the whole state. This is important: \par | ||||
| we cannot apply transformations to individual bits---we always transform the \textit{entire} state. | ||||
|  | ||||
|  | ||||
| \vfill | ||||
| \pagebreak | ||||
|  | ||||
| \generic{Setup:} | ||||
| Say we want to invert the first bit of a two-bit state. That is, we want a transformation $T$ so that \par | ||||
|  | ||||
| \begin{center} | ||||
| \begin{tikzpicture}[scale=0.8] | ||||
| 	\node[qubit] (a) at (0, 0) {\texttt{a}}; | ||||
| 	\node[qubit] (b) at (0, -1) {\texttt{b}}; | ||||
|  | ||||
| 	\draw[wire] (a) -- ([shift={(4, 0)}] a.center) node[qubit] {\texttt{not a}}; | ||||
| 	\draw[wire] (b) -- ([shift={(4, 0)}] b.center) node[qubit] {\texttt{b}}; | ||||
|  | ||||
| 	\qubox{a}{1.5}{b}{2.5}{$T$} | ||||
| \end{tikzpicture} | ||||
| \end{center} | ||||
|  | ||||
| In other words, we want a matrix $T$ satisfying the following equalities: | ||||
| \begin{itemize} | ||||
| 	\item $T\ket{00} = \ket{10}$ | ||||
| 	\item $T\ket{01} = \ket{11}$ | ||||
| 	\item $T\ket{10} = \ket{00}$ | ||||
| 	\item $T\ket{11} = \ket{01}$ | ||||
| \end{itemize} | ||||
|  | ||||
|  | ||||
|  | ||||
| \problem{} | ||||
| Find the matrix that corresponds to the above transformation. \par | ||||
| \hint{ | ||||
| 	Remember that | ||||
| 	$\ket{0} = \left[\begin{smallmatrix} 1 \\ 0 \end{smallmatrix}\right]$ and | ||||
| 	$\ket{1} = \left[\begin{smallmatrix} 0 \\ 1 \end{smallmatrix}\right]$ \\ | ||||
| 	Also, we found earlier that $X = \left[\begin{smallmatrix} 0 && 1 \\ 1 && 0 \end{smallmatrix}\right]$, | ||||
| 	and of course $I = \left[\begin{smallmatrix} 1 && 0 \\ 0 && 1 \end{smallmatrix}\right]$. | ||||
| } | ||||
|  | ||||
| \begin{solution} | ||||
| 	\begin{equation*} | ||||
| 		T = \begin{bmatrix} | ||||
| 			0 & 0 & 1 & 0 \\ | ||||
| 			0 & 0 & 0 & 1 \\ | ||||
| 			1 & 0 & 0 & 0 \\ | ||||
| 			0 & 1 & 0 & 0 \\ | ||||
| 		\end{bmatrix} | ||||
| 	\end{equation*} | ||||
| \end{solution} | ||||
|  | ||||
| \vfill | ||||
|  | ||||
| \generic{Remark:} | ||||
| We could draw the above transformation as a combination $X$ and $I$ (identity) gate: | ||||
| \begin{center} | ||||
| \begin{tikzpicture}[scale=0.8] | ||||
| 	\node[qubit] (a) at (0, 0) {$\ket{0}$}; | ||||
| 	\node[qubit] (b) at (0, -1) {$\ket{0}$}; | ||||
|  | ||||
| 	\draw[wire] (a) -- ([shift={(3, 0)}] a.center) node[qubit] {$\ket{1}$}; | ||||
| 	\draw[wire] (b) -- ([shift={(3, 0)}] b.center) node[qubit] {$\ket{0}$}; | ||||
|  | ||||
| 	\qubox{a}{1}{a}{2}{$X$} | ||||
| 	\qubox{b}{1}{b}{2}{$I$} | ||||
| \end{tikzpicture} | ||||
| \end{center} | ||||
|  | ||||
| We can even omit the $I$ gate, since we now know that transformations affect the whole state: \par | ||||
| \begin{center} | ||||
| \begin{tikzpicture}[scale=0.8] | ||||
| 	\node[qubit] (a) at (0, 0) {$\ket{0}$}; | ||||
| 	\node[qubit] (b) at (0, -1) {$\ket{0}$}; | ||||
|  | ||||
| 	\draw[wire] (a) -- ([shift={(3, 0)}] a.center) node[qubit] {$\ket{1}$}; | ||||
| 	\draw[wire] (b) -- ([shift={(3, 0)}] b.center) node[qubit] {$\ket{0}$}; | ||||
|  | ||||
| 	\qubox{a}{1}{a}{2}{$X$} | ||||
| \end{tikzpicture} | ||||
| \end{center} | ||||
| We're now done: this is how we draw quantum circuits. | ||||
| Don't forget that transformations \textit{always} affect the whole state---even if our diagram doesn't explicitly state this. | ||||
|  | ||||
| \pagebreak | ||||
|  | ||||
| % TODO: | ||||
| % distributive property of tensor product | ||||
| % quantum gate algebra | ||||
							
								
								
									
										234
									
								
								Advanced/Introduction to Quantum/src/parts/05 quantum gates.tex
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										234
									
								
								Advanced/Introduction to Quantum/src/parts/05 quantum gates.tex
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,234 @@ | ||||
| \section{Quantum Gates} | ||||
|  | ||||
|  | ||||
| In the previous section, we stated that a quantum gate is a linear map. \par | ||||
| Let's complete that definition. | ||||
|  | ||||
| \definition{} | ||||
| A quantum gate is a \textit{orthonormal matrix}, which means any gate $G$ | ||||
| satisfies $GG^\text{T} = I$. \par | ||||
| This implies the following: \par | ||||
|  | ||||
| \begin{itemize} | ||||
| 	\item $G$ is square \par | ||||
| 	\note{ | ||||
| 		If we think of $G$ as a map, this means that $G$ has as many inputs as it has outputs. \\ | ||||
| 		This is to be expected: we stated earlier that quantum gates do not destroy or create qubits. | ||||
| 	} | ||||
|  | ||||
| 	\item $G$ preserves lengths; i.e $|x| = |Gx|$. \par | ||||
| 	\note{This ensures that $G\ket{\psi}$ is always a valid state.} | ||||
| \end{itemize} | ||||
|  | ||||
| (You will prove all these properties in any introductory linear algebra course. \\ | ||||
| This isn't a lesson on linear algebra, so you may take them as given today.) | ||||
|  | ||||
| \definition{} | ||||
| Let $\mathbb{U} \subset \mathbb{R}^2$ be the set of points in the unit circle. \par | ||||
| We can restate the above definition as follows: \par | ||||
| A quantum gate is an invertible map from $\mathbb{U}^n$ to $\mathbb{U}^n$. | ||||
|  | ||||
|  | ||||
| \definition{}<qgateislinear> | ||||
| Let $G$ be a quantum gate. \par | ||||
| Since quantum gates are, by definition, \textit{linear} maps, | ||||
| the following holds: \par | ||||
|  | ||||
| \begin{equation*} | ||||
| 	G\bigl(a_0 \ket{0} + a_1\ket{1}\bigr) = a_0G\ket{0} + a_1G\ket{1} | ||||
| \end{equation*} | ||||
|  | ||||
| \problem{}<cnot> | ||||
| Consider the \textit{controlled not} (or \textit{cnot}) gate, defined by the following table: \par | ||||
| \begin{itemize} | ||||
| 	\item $\text{X}_\text{c}\ket{00} = \ket{00}$ | ||||
| 	\item $\text{X}_\text{c}\ket{01} = \ket{11}$ | ||||
| 	\item $\text{X}_\text{c}\ket{10} = \ket{10}$ | ||||
| 	\item $\text{X}_\text{c}\ket{11} = \ket{01}$ | ||||
| \end{itemize} | ||||
| In other words, the cnot gate inverts its first bit if its second bit is $\ket{1}$. \par | ||||
| Find the matrix that applies the cnot gate. | ||||
|  | ||||
| \begin{solution} | ||||
| 	\begin{equation*} | ||||
| 		\text{X}_\text{c} = \left[\begin{smallmatrix} | ||||
| 			1 & 0 & 0 & 0 \\ | ||||
| 			0 & 1 & 0 & 0 \\ | ||||
| 			0 & 0 & 0 & 1 \\ | ||||
| 			0 & 0 & 1 & 0 \\ | ||||
| 		\end{smallmatrix}\right] | ||||
| 	\end{equation*} | ||||
|  | ||||
| 	\vspace{4mm} | ||||
|  | ||||
| 	If $\ket{a}$ is $\ket{0}$, $\ket{a} \otimes \ket{b}$ is | ||||
| 	$ | ||||
| 	\left[ | ||||
| 	\begin{smallmatrix} | ||||
| 		\left[ | ||||
| 		\begin{smallmatrix} | ||||
| 			b_1 \\ b_2 | ||||
| 		\end{smallmatrix} | ||||
| 		\right] | ||||
| 		\\ 0 \\ 0 | ||||
| 	\end{smallmatrix} | ||||
| 	\right] | ||||
| 	$, and the \say{not} portion of the matrix is ignored. | ||||
|  | ||||
|  | ||||
| 	\vspace{4mm} | ||||
|  | ||||
| 	If $\ket{a}$ is $\ket{1}$, $\ket{a} \otimes \ket{b}$ is | ||||
| 	$ | ||||
| 	\left[ | ||||
| 	\begin{smallmatrix} | ||||
| 		0 \\ 0 \\ | ||||
| 		\left[ | ||||
| 		\begin{smallmatrix} | ||||
| 			b_1 \\ b_2 | ||||
| 		\end{smallmatrix} | ||||
| 		\right] | ||||
| 	\end{smallmatrix} | ||||
| 	\right] | ||||
| 	$, and the \say{identity} portion of the matrix is ignored. | ||||
|  | ||||
|  | ||||
| 	The state of $\ket{a}$ is always preserved, since it's determined by the position of | ||||
| 	$\left[\begin{smallmatrix}b_1 \\ b_2\end{smallmatrix}\right]$ in the tensor product. | ||||
| 	If $\left[\begin{smallmatrix}b_1 \\ b_2\end{smallmatrix}\right]$ is on top, $\ket{a}$ is $\ket{0}$, | ||||
| 	and if $\left[\begin{smallmatrix}b_1 \\ b_2\end{smallmatrix}\right]$ is on the bottom, $\ket{a}$ is $\ket{1}$. | ||||
| \end{solution} | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| \vfill | ||||
| \pagebreak | ||||
|  | ||||
|  | ||||
|  | ||||
| \problem{}<applycnot> | ||||
| Evaluate the following: | ||||
| \begin{equation*} | ||||
| 	\text{X}_\text{C} | ||||
| 	\Bigl( | ||||
| 		\frac{1}{2}\ket{00} + | ||||
| 		\frac{1}{2}\ket{01} - | ||||
| 		\frac{1}{2}\ket{10} - | ||||
| 		\frac{1}{2}\ket{11} | ||||
| 	\Bigr) | ||||
| \end{equation*} | ||||
|  | ||||
|  | ||||
| \vfill | ||||
|  | ||||
| \problem{} | ||||
| If we measure the result of \ref{applycnot}, what are the probabilities of getting each state? | ||||
|  | ||||
| \vfill | ||||
|  | ||||
| \problem{} | ||||
| Finally, modify the original cnot gate so that the roles of its bits are reversed: \par | ||||
| $\text{X}_\text{c, flipped} \ket{ab}$ should invert $\ket{a}$ iff $\ket{b}$ is $\ket{1}$. | ||||
|  | ||||
|  | ||||
| \begin{solution} | ||||
| 	\begin{equation*} | ||||
| 		\text{X}_\text{c, flipped} = \begin{bmatrix} | ||||
| 			1 & 0 & 0 & 0 \\ | ||||
| 			0 & 0 & 0 & 1 \\ | ||||
| 			0 & 0 & 1 & 0 \\ | ||||
| 			0 & 1 & 0 & 0 \\ | ||||
| 		\end{bmatrix} | ||||
| 	\end{equation*} | ||||
| \end{solution} | ||||
|  | ||||
| \vfill | ||||
| \pagebreak | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| \definition{} | ||||
| The \textit{Hadamard Gate} is given by the following matrix: \par | ||||
| \begin{equation*} | ||||
| 	H = \frac{1}{\sqrt{2}}\begin{bmatrix} | ||||
| 		1 & 1 \\ | ||||
| 		1 & -1 | ||||
| 	\end{bmatrix} | ||||
| \end{equation*} | ||||
| \note{Note that we divide by $\sqrt{2}$, since $H$ must be orthonormal.} | ||||
|  | ||||
| \begin{ORMCbox}{Review: Matrix Multiplication}{black!10!white}{black!65!white} | ||||
| 	Matrix multiplication works as follows: | ||||
|  | ||||
| 	\begin{equation*} | ||||
| 		AB = | ||||
| 		\begin{bmatrix} | ||||
| 			1 & 2 \\ | ||||
| 			3 & 4 \\ | ||||
| 		\end{bmatrix} | ||||
| 		\begin{bmatrix} | ||||
| 			a_0 & b_0 \\ | ||||
| 			a_1 & b_1 \\ | ||||
| 		\end{bmatrix} | ||||
| 		= | ||||
| 		\begin{bmatrix} | ||||
| 			1a_0 + 2a_1 & 1b_0 + 2b_1 \\ | ||||
| 			3a_0 + 4a_1 & 3b_0 + 4b_1 \\ | ||||
| 		\end{bmatrix} | ||||
| 	\end{equation*} | ||||
|  | ||||
|  | ||||
| 	Note that this is very similar to multiplying each column of $B$ by $A$. \par | ||||
| 	The product $AB$ is simply $Ac$ for every column $c$ in $B$: | ||||
|  | ||||
| 	\begin{equation*} | ||||
| 		Ac_0 = | ||||
| 		\begin{bmatrix} | ||||
| 			1 & 2 \\ | ||||
| 			3 & 4 \\ | ||||
| 		\end{bmatrix} | ||||
| 		\begin{bmatrix} | ||||
| 			a_0 \\ a_1 | ||||
| 		\end{bmatrix} | ||||
| 		= | ||||
| 		\begin{bmatrix} | ||||
| 			1a_0 + 2a_1 \\ | ||||
| 			3a_0 + 4a_1 | ||||
| 		\end{bmatrix} | ||||
| 	\end{equation*} | ||||
|  | ||||
| 	This is exactly the first column of the matrix product. \par | ||||
| 	Also, note that each element of $Ac_0$ is the dot product of a row in $A$ and a column in $c_0$. | ||||
| \end{ORMCbox} | ||||
|  | ||||
|  | ||||
| \problem{} | ||||
| What is $HH$? \par | ||||
| Using this result, find $H^{-1}$. | ||||
|  | ||||
| \begin{solution} | ||||
| 	$HH = I$, so $H^{-1} = H$ | ||||
| \end{solution} | ||||
|  | ||||
| \vfill | ||||
|  | ||||
| \problem{} | ||||
| What geometric transformation does $H$ apply to the unit circle? \par | ||||
| \hint{Rotation or reflection? How much, or about which axis?} | ||||
|  | ||||
| \vfill | ||||
|  | ||||
| \problem{} | ||||
| What are $H\ket{0}$ and $H\ket{1}$? \par | ||||
| Are these states entangled? | ||||
|  | ||||
| \begin{solution} | ||||
| 	$H\ket{0} = \frac{1}{\sqrt{2}}\bigl(\ket{0} + \ket{1}\bigr)$ and $H\ket{1} = \frac{1}{\sqrt{2}}\bigl(\ket{0} - \ket{1}\bigr)$ \par | ||||
| 	Both of these are entangled states. | ||||
| \end{solution} | ||||
|  | ||||
| \vfill | ||||
| \pagebreak | ||||
		Reference in New Issue
	
	Block a user