Euler edits
This commit is contained in:
126
Advanced/Euler's Number/parts/3 more e.tex
Normal file
126
Advanced/Euler's Number/parts/3 more e.tex
Normal file
@ -0,0 +1,126 @@
|
||||
\section{More about $e$}
|
||||
|
||||
\problem{}
|
||||
Show that
|
||||
$$
|
||||
\lim_{n\to\infty}{
|
||||
\bigg(
|
||||
1 + \frac{1}{n+1}
|
||||
\bigg)^n
|
||||
= e
|
||||
}
|
||||
$$
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
Show that
|
||||
$$
|
||||
\lim_{n\to\infty}{
|
||||
\bigg(
|
||||
1 + \frac{1}{n}
|
||||
\bigg)^{n+1}
|
||||
= e
|
||||
}
|
||||
$$
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
|
||||
|
||||
\problem{}<inverse_e>
|
||||
Show that
|
||||
$$
|
||||
\lim_{n\to\infty}{
|
||||
\bigg(
|
||||
1 - \frac{1}{n}
|
||||
\bigg)^n
|
||||
= \frac{1}{e}
|
||||
}
|
||||
$$
|
||||
|
||||
\begin{solution}
|
||||
$
|
||||
\lim_{n\to\infty}{(1 - \frac{1}{n})^n} =
|
||||
\lim_{n\to\infty}{(\frac{n-1}{n})^{(-1)(-n)}}
|
||||
$ \par
|
||||
|
||||
$
|
||||
= \lim_{n\to\infty}{(\frac{n}{n- 1 })^{-n}}
|
||||
= \lim_{n\to\infty}{(1 + \frac{1}{n-1})^{-n}}
|
||||
$ \par
|
||||
|
||||
$
|
||||
= \lim_{n\to\infty}{{(1 + \frac{1}{n-1})^{(n-1)(\frac{n}{n-1})}}^{-1}}
|
||||
$ \par
|
||||
|
||||
$
|
||||
= \frac{1}{e}
|
||||
$
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
Show that
|
||||
$$
|
||||
\lim_{n\to\infty}{
|
||||
\bigg(
|
||||
1 + \frac{x}{n}
|
||||
\bigg)^n
|
||||
= e^x
|
||||
}
|
||||
$$
|
||||
Note that \ref{inverse_e} is a special case of this problem.
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
|
||||
\theorem{}
|
||||
The following important formula is proven in most calculus courses.
|
||||
|
||||
$$e^x = \sum_{n=0}^{\infty}{\frac{x^n}{n!}} = 2 + \frac{x^2}{2!} + \frac{x^3}{3!} + ...$$
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
What are the first six digits of $e$?
|
||||
|
||||
\begin{solution}
|
||||
$e = 2.718\ 281\ 828$
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
|
||||
|
||||
\definition{}
|
||||
If $f$ is a function, we say that $L$ is a limit of $f$ at $\infty$ if for every $\epsilon > 0$, we can find an $M \in \mathbb{R}$ so that $|f(x) - L| < \epsilon$ for $x > M$. \par
|
||||
If this is true, we say that $L = \lim_{x\to\infty}{(f(x))}$.
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
Prove the following: \par
|
||||
Hint: If $x > 0$, then $\lfloor x \rfloor \leq x \leq \lceil x \rceil$
|
||||
|
||||
$$ \lim_{x\to\infty}{\bigg(1 + \frac{1}{x}\bigg)^x} = e$$
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
Reference in New Issue
Block a user