Started symmetric group handout
This commit is contained in:
parent
91d99239d6
commit
ec57939416
@ -49,12 +49,4 @@
|
||||
% Q/Z problems (mod generalization)
|
||||
% isomorphism groups (which are iso to symmetric group)
|
||||
|
||||
|
||||
% Another handout:
|
||||
%
|
||||
% symmetric group, number of permutations,
|
||||
% cycle notation, type and sign,
|
||||
% proofs about generators, alternating group
|
||||
% alternating group generators, fun problems.
|
||||
|
||||
\end{document}
|
||||
|
38
Advanced/Symmetric Group/main.tex
Executable file
38
Advanced/Symmetric Group/main.tex
Executable file
@ -0,0 +1,38 @@
|
||||
% use [nosolutions] flag to hide solutions.
|
||||
% use [solutions] flag to show solutions.
|
||||
\documentclass[
|
||||
solutions,
|
||||
singlenumbering
|
||||
]{../../resources/ormc_handout}
|
||||
\usepackage{../../resources/macros}
|
||||
|
||||
|
||||
\uptitlel{Advanced 2}
|
||||
\uptitler{Winter 2023}
|
||||
\title{Symmetric Groups}
|
||||
\subtitle{Prepared by \githref{Mark} on \today{}}
|
||||
|
||||
|
||||
|
||||
|
||||
\begin{document}
|
||||
|
||||
\maketitle
|
||||
|
||||
\input{parts/0 intro}
|
||||
|
||||
% cycle notation
|
||||
% decomposition into transpositions
|
||||
% few more problems?
|
||||
|
||||
% inline functions
|
||||
% symmetric group
|
||||
% order & generators
|
||||
% subgroups
|
||||
% alternating group
|
||||
|
||||
% type and sign
|
||||
% isomorphisms & automorphisms
|
||||
% automorphism groups
|
||||
|
||||
\end{document}
|
188
Advanced/Symmetric Group/parts/0 intro.tex
Normal file
188
Advanced/Symmetric Group/parts/0 intro.tex
Normal file
@ -0,0 +1,188 @@
|
||||
\section{Introduction}
|
||||
|
||||
\definition{Intuitive permutations}
|
||||
Intuitively, a \textit{permutation} is an ordered arrangement of a set of objects. \par
|
||||
For example, $123$, $312$, and $231$ are all permutations of 1, 2, and 3.
|
||||
|
||||
\problem{}
|
||||
List all permutations on three objects. \par
|
||||
How many permutations of $n$ objects are there?
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
|
||||
\definition{Formal permutations}<permadef>
|
||||
Let $\Omega$ be an arbitrary set of $n$ objects. \par
|
||||
A \textit{permutation} on $\Omega$ is a bijective map $f: \Omega \to \Omega$.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
For example, consider the objects 1, 2, and 3. \par
|
||||
The permutation $[312]$ is given by a map $f$ defined by the following table:
|
||||
\begin{itemize}
|
||||
\item $f(1) = 3$
|
||||
\item $f(2) = 1$
|
||||
\item $f(3) = 2$
|
||||
\end{itemize}
|
||||
|
||||
Similarly, the \textit{trivial permutation} $[123]$ is given by the identity map $f(x) = x$.
|
||||
|
||||
\problem{}
|
||||
What map corresponds to the permutation $[321]$?
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
Why do we define permutations as a \textit{bijective} map?
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
We can visualize permutations with a diagram we'll call the \say{braid.}
|
||||
The arrows in the diagram denote the image of $f$ for each possible input.
|
||||
Two examples are below:
|
||||
|
||||
\vspace{2mm}
|
||||
\hfill
|
||||
\begin{tikzpicture}[scale=0.5]
|
||||
\node (1a) at (0, 0.5) {1};
|
||||
\node (2a) at (1, 0.5) {2};
|
||||
\node (3a) at (2, 0.5) {3};
|
||||
\node (4a) at (3, 0.5) {4};
|
||||
|
||||
\node (1b) at (0, -2) {1};
|
||||
\node (3b) at (1, -2) {3};
|
||||
\node (4b) at (2, -2) {4};
|
||||
\node (2b) at (3, -2) {2};
|
||||
|
||||
\draw[line width = 0.3mm, ->, ocyan] (1a.south) -- (1a.south |- 0, -0.5) -- (1b.north |- 0,-1) -- (1b.north);
|
||||
\draw[line width = 0.3mm, ->, ocyan] (2a.south) -- (2a.south |- 0, -0.5) -- (2b.north |- 0,-1) -- (2b.north);
|
||||
\draw[line width = 0.3mm, ->, ocyan] (3a.south) -- (3a.south |- 0, -0.5) -- (3b.north |- 0,-1) -- (3b.north);
|
||||
\draw[line width = 0.3mm, ->, ocyan] (4a.south) -- (4a.south |- 0, -0.5) -- (4b.north |- 0,-1) -- (4b.north);
|
||||
\end{tikzpicture}
|
||||
\hfill
|
||||
\begin{tikzpicture}[scale=0.5]
|
||||
\node (1a) at (0, 0.5) {1};
|
||||
\node (2a) at (1, 0.5) {2};
|
||||
\node (3a) at (2, 0.5) {3};
|
||||
\node (4a) at (3, 0.5) {4};
|
||||
|
||||
\node (2b) at (0, -2) {2};
|
||||
\node (1b) at (1, -2) {1};
|
||||
\node (3b) at (2, -2) {3};
|
||||
\node (4b) at (3, -2) {4};
|
||||
|
||||
\draw[line width = 0.3mm, ->, ocyan] (1a.south) -- (1a.south |- 0, -0.5) -- (1b.north |- 0,-1) -- (1b.north);
|
||||
\draw[line width = 0.3mm, ->, ocyan] (2a.south) -- (2a.south |- 0, -0.5) -- (2b.north |- 0,-1) -- (2b.north);
|
||||
\draw[line width = 0.3mm, ->, ocyan] (3a.south) -- (3a.south |- 0, -0.5) -- (3b.north |- 0,-1) -- (3b.north);
|
||||
\draw[line width = 0.3mm, ->, ocyan] (4a.south) -- (4a.south |- 0, -0.5) -- (4b.north |- 0,-1) -- (4b.north);
|
||||
\end{tikzpicture}
|
||||
\hfill\null
|
||||
|
||||
Note that in all our examples thus far, the objects in our set have an implicit order.
|
||||
This is only for convenience. The elements of $\Omega$ are not ordered (it is a \textit{set}, after all),
|
||||
and we may present them however we wish.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\vspace{1cm}
|
||||
|
||||
For example, consider the diagrams below. \par
|
||||
On the left, 1234 are ordered as usual. In the middle, they are ordered alphabetically. \par
|
||||
The rightmost diagram uses arbitrary, meaningless labels.
|
||||
|
||||
\vspace{2mm}
|
||||
\hfill
|
||||
\begin{tikzpicture}[scale=0.5]
|
||||
\node (1a) at (0, 0.5) {1};
|
||||
\node (2a) at (1, 0.5) {2};
|
||||
\node (3a) at (2, 0.5) {3};
|
||||
\node (4a) at (3, 0.5) {4};
|
||||
|
||||
\node (2b) at (0, -2) {2};
|
||||
\node (1b) at (1, -2) {1};
|
||||
\node (3b) at (2, -2) {3};
|
||||
\node (4b) at (3, -2) {4};
|
||||
|
||||
\draw[line width = 0.3mm, ->, ocyan] (1a.south) -- (1a.south |- 0, -0.5) -- (1b.north |- 0,-1) -- (1b.north);
|
||||
\draw[line width = 0.3mm, ->, ocyan] (2a.south) -- (2a.south |- 0, -0.5) -- (2b.north |- 0,-1) -- (2b.north);
|
||||
\draw[line width = 0.3mm, ->, ocyan] (3a.south) -- (3a.south |- 0, -0.5) -- (3b.north |- 0,-1) -- (3b.north);
|
||||
\draw[line width = 0.3mm, ->, ocyan] (4a.south) -- (4a.south |- 0, -0.5) -- (4b.north |- 0,-1) -- (4b.north);
|
||||
\end{tikzpicture}
|
||||
\hfill
|
||||
\begin{tikzpicture}[scale=0.5]
|
||||
\node (4a) at (0, 0.5) {4};
|
||||
\node (1a) at (1, 0.5) {1};
|
||||
\node (3a) at (2, 0.5) {3};
|
||||
\node (2a) at (3, 0.5) {2};
|
||||
|
||||
\node (1b) at (0, -2) {1};
|
||||
\node (4b) at (1, -2) {4};
|
||||
\node (3b) at (2, -2) {3};
|
||||
\node (2b) at (3, -2) {2};
|
||||
|
||||
\draw[line width = 0.3mm, ->, ocyan] (1a.south) -- (1a.south |- 0, -0.5) -- (1b.north |- 0,-1) -- (1b.north);
|
||||
\draw[line width = 0.3mm, ->, ocyan] (2a.south) -- (2a.south |- 0, -0.5) -- (2b.north |- 0,-1) -- (2b.north);
|
||||
\draw[line width = 0.3mm, ->, ocyan] (3a.south) -- (3a.south |- 0, -0.5) -- (3b.north |- 0,-1) -- (3b.north);
|
||||
\draw[line width = 0.3mm, ->, ocyan] (4a.south) -- (4a.south |- 0, -0.5) -- (4b.north |- 0,-1) -- (4b.north);
|
||||
\end{tikzpicture}
|
||||
\hfill
|
||||
\begin{tikzpicture}[scale=0.5]
|
||||
\node (1a) at (0, 0.5) {$\triangle$};
|
||||
\node (2a) at (1, 0.5) {$\divideontimes$};
|
||||
\node (3a) at (2, 0.5) {$\circledcirc$};
|
||||
\node (4a) at (3, 0.5) {$\boxdot$};
|
||||
|
||||
\node (2b) at (0, -2) {$\divideontimes$};
|
||||
\node (1b) at (1, -2) {$\triangle$};
|
||||
\node (3b) at (2, -2) {$\circledcirc$};
|
||||
\node (4b) at (3, -2) {$\boxdot$};
|
||||
|
||||
\draw[line width = 0.3mm, ->, ocyan] (1a.south) -- (1a.south |- 0, -0.5) -- (1b.north |- 0,-1) -- (1b.north);
|
||||
\draw[line width = 0.3mm, ->, ocyan] (2a.south) -- (2a.south |- 0, -0.5) -- (2b.north |- 0,-1) -- (2b.north);
|
||||
\draw[line width = 0.3mm, ->, ocyan] (3a.south) -- (3a.south |- 0, -0.5) -- (3b.north |- 0,-1) -- (3b.north);
|
||||
\draw[line width = 0.3mm, ->, ocyan] (4a.south) -- (4a.south |- 0, -0.5) -- (4b.north |- 0,-1) -- (4b.north);
|
||||
\end{tikzpicture}
|
||||
\hfill\null
|
||||
|
||||
It shouldn't be hard to see that despite the different \say{output} order (2134 and 1432), \par
|
||||
the same permutation is depicted in all three diagrams. This example demonstrates two things:
|
||||
\begin{itemize}[itemsep=2mm]
|
||||
\item First, the items of our set do not have any meaning. \par
|
||||
$\Omega$ is just a set of arbitrary \textit{things}, which we may label however we like.
|
||||
|
||||
\item Second, permutations are verbs. We do not care about the \say{output} of a certain permutation,
|
||||
we care about what it \textit{does}. We could, for example, describe the permutation above as
|
||||
\say{swap the first two of four elements.}
|
||||
\end{itemize}
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
\vspace{1cm}
|
||||
|
||||
Why, then, do we order our elements when we talk about permutations? As noted before, this is for convenience.
|
||||
If we assign a natural order to the elements of $\Omega$ (say, 1234), we can identify permutations by simply listing
|
||||
their output:
|
||||
Clearly, $[1234]$ represents the trivial permutation, $[2134]$ represents \say{swap first two,}
|
||||
and $[4123]$ represents \say{cycle left.}
|
||||
|
||||
\problem{}
|
||||
Draw braids for $[4123]$ and $[2341]$.
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
Finally, note that permutations (as defined in \ref{permadef}) are \textit{not} \say{orderings of a certain set.} \par
|
||||
They are defined as \textit{bijective maps}, which can be \textit{thought of} as orderings. \par
|
||||
Remember: permutations are verbs!
|
||||
|
||||
\pagebreak
|
Loading…
x
Reference in New Issue
Block a user