Added first section of option handout
This commit is contained in:
parent
1f237f6b2a
commit
ea3ef136fa
90
Advanced/Options in Finance/main.tex
Executable file
90
Advanced/Options in Finance/main.tex
Executable file
@ -0,0 +1,90 @@
|
||||
% use [nosolutions] flag to hide solutions.
|
||||
% use [solutions] flag to show solutions.
|
||||
\documentclass[
|
||||
solutions
|
||||
]{../../resources/ormc_handout}
|
||||
\usepackage{../../resources/macros}
|
||||
|
||||
\usepackage{mdframed}
|
||||
\usepackage{pgf}
|
||||
|
||||
% Ruble symbol with tweaks
|
||||
\DeclareRobustCommand*{\Rub}{%
|
||||
\begingroup
|
||||
\dimendef\H=0 %
|
||||
\settoheight\H{P}%
|
||||
\begin{pgfpicture}%
|
||||
\pgfsetlinewidth{.1\H}%
|
||||
\pgfsetrectcap
|
||||
\pgfsetmiterjoin
|
||||
\pgfmoveto{\pgfpoint{0pt}{0.07\H}}% Move to bottom of main line
|
||||
\pgflineto{\pgfpoint{0pt}{.90\H}}% P main line
|
||||
\pgflineto{\pgfpoint{.3\H}{.90\H}}% P top line
|
||||
\pgfpatharc{90}{-90}{.21\H}% P circle
|
||||
\pgflineto{\pgfpoint{-.08\H}{.48\H}}% P bottom line
|
||||
\pgfmoveto{\pgfpoint{-.08\H}{.31\H}}% Bonus line move
|
||||
\pgflineto{\pgfpoint{.34\H}{.31\H}}% Bonus line draw
|
||||
\pgfusepath{stroke}%
|
||||
\pgfmoveto{\pgfpoint{-.23\H}{0pt}}% Before space
|
||||
\pgfmoveto{\pgfpoint{0.55\H}{0pt}}% After space
|
||||
\end{pgfpicture}%
|
||||
\endgroup
|
||||
}
|
||||
|
||||
% Ruble symbol, per official Kremlin specification
|
||||
%
|
||||
%\DeclareRobustCommand*{\Rub}{%
|
||||
% \begingroup
|
||||
% \dimendef\H=0 %
|
||||
% \settoheight\H{P}%
|
||||
% \begin{pgfpicture}%
|
||||
% \pgfsetlinewidth{.1\H}%
|
||||
% \pgfsetrectcap
|
||||
% \pgfsetmiterjoin
|
||||
% \pgfmoveto{\pgfpoint{0pt}{0.05\H}}%
|
||||
% \pgflineto{\pgfpoint{0pt}{.95\H}}%
|
||||
% \pgflineto{\pgfpoint{.35\H}{.95\H}}%
|
||||
% \pgfpatharc{90}{-90}{.225\H}%
|
||||
% \pgflineto{\pgfpoint{-.05\H}{.5\H}}%
|
||||
% \pgfmoveto{\pgfpoint{-.05\H}{.34\H}}%
|
||||
% \pgflineto{\pgfpoint{.38\H}{.34\H}}%
|
||||
% \pgfusepath{stroke}%
|
||||
% \pgfmoveto{\pgfpoint{-.175\H}{0pt}}%
|
||||
% \pgfmoveto{\pgfpoint{.7\H}{0pt}}%
|
||||
% \end{pgfpicture}%
|
||||
% \endgroup
|
||||
%}
|
||||
|
||||
\newmdenv[
|
||||
topline=false,
|
||||
bottomline=false,
|
||||
rightline=true,
|
||||
leftline=true,
|
||||
linewidth=0.3mm,
|
||||
frametitle={Contract:},
|
||||
frametitlefont={\textsc},
|
||||
%
|
||||
skipabove=1mm,
|
||||
skipbelow=1mm,
|
||||
%
|
||||
innerleftmargin=2mm,
|
||||
innerrightmargin=4mm,
|
||||
leftmargin=2mm,
|
||||
rightmargin=2mm,
|
||||
]{contract}
|
||||
|
||||
\uptitlel{Advanced 2}
|
||||
\uptitler{Fall 2023}
|
||||
\title{Options in Finance}
|
||||
\subtitle{
|
||||
Prepared by \githref{Mark} on \today{}
|
||||
}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\maketitle
|
||||
|
||||
\input{parts/0 intro}
|
||||
\input{parts/1 call}
|
||||
|
||||
\end{document}
|
5
Advanced/Options in Finance/parts/0 intro.tex
Normal file
5
Advanced/Options in Finance/parts/0 intro.tex
Normal file
@ -0,0 +1,5 @@
|
||||
\section{Introduction}
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
116
Advanced/Options in Finance/parts/1 call.tex
Normal file
116
Advanced/Options in Finance/parts/1 call.tex
Normal file
@ -0,0 +1,116 @@
|
||||
\section{Call Options}
|
||||
|
||||
\definition{}
|
||||
A \textit{call option} is an agreement between a buyer (B) and a seller (S): \par
|
||||
|
||||
\begin{contract}[frametitle={Contract: Call Option}]
|
||||
B pays S a premium $p$. \par
|
||||
In return, S agrees to sell B a certain commodity $\mathbb{X}$ for a fixed price $k$ at a future time $t$.
|
||||
\end{contract}
|
||||
|
||||
|
||||
|
||||
|
||||
\problem{}<firstcall>
|
||||
B has ten call options for $\mathbb{X}$ at $23\Rub$. The current price of $\mathbb{X}$ is $20\Rub$. \par
|
||||
How much profit can B make if these contracts expire when $\mathbb{X}$ is $30\Rub$? \par
|
||||
\hint{When the contract expires, B can buy 10 shares of $\mathbb{X}$ at the price the contract set.}
|
||||
|
||||
\begin{solution}
|
||||
B has the right to buy 10 shares of $\mathbb{X}$ at $23\Rub$. \par
|
||||
If B immediately sells them, his profit is $-230 + 300 = 70\Rub$
|
||||
\end{solution}
|
||||
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
If B paid $10\Rub$ for the call options in \ref{firstcall}, how much money did he really make?
|
||||
|
||||
\begin{solution}
|
||||
$-10 + (-230 + 300) = 60\Rub$
|
||||
\end{solution}
|
||||
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
Now, suppose that B bought and sold $\mathbb{X}$ directly instead of using a call option. \par
|
||||
How much profit would B have made?
|
||||
|
||||
\begin{solution}
|
||||
Buy for $200\Rub$, sell for $300\Rub$.\par
|
||||
$-200 + 300 = 100\Rub$
|
||||
\end{solution}
|
||||
|
||||
|
||||
|
||||
\vfill
|
||||
|
||||
Given the results of the previous problems, why would anybody buy a call option?
|
||||
\pagebreak
|
||||
|
||||
|
||||
\problem{}
|
||||
Suppose $\mathbb{X}$ is worth $x_0$ right now. \par
|
||||
Call options to buy $\mathbb{X}$ at $k$ are sold for $p$.
|
||||
|
||||
\begin{itemize}
|
||||
\item What is the set of B's possible profit if..
|
||||
\begin{itemize}
|
||||
\item B buys a call option?
|
||||
\item B buys $\mathbb{X}$ directly?
|
||||
\end{itemize}
|
||||
\hint{That is, what amounts of money can he make (or lose)?}
|
||||
|
||||
\item Are call options priced above or below the price of their stock? Why?
|
||||
\item Why would anybody buy a call option?
|
||||
|
||||
\end{itemize}
|
||||
|
||||
|
||||
\begin{solution}
|
||||
\textbf{Call Option:} $[p, \infty)$ \par
|
||||
If the price of $\mathbb{X}$ rises, there is no limit to how much money B can make. \par
|
||||
If the price falls, $B$ can choose to let his contract expire, losing only $p$.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
\textbf{Direct:} $[x_0, \infty)$\par
|
||||
If the price of $\mathbb{X}$ rises, there is again no limit to how much money B can make. \par
|
||||
If the price falls, $B$ will lose everything he paid for his shares of $\mathbb{X}$.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
Of course, call options are priced below their stock. There wouldn't be a reason to buy then
|
||||
if they were priced above!
|
||||
\end{solution}
|
||||
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Suppose $\mathbb{X}$ is worth $x_0$ right now. \par
|
||||
Call options to buy $\mathbb{X}$ at $k$ are sold for $p$. \par
|
||||
|
||||
\vspace{2mm}
|
||||
Assume that S owns no stock---if B executes his contracts, she will buy stock and re-sell it to him. \par
|
||||
What are S's possible profits if she sells B a call option?
|
||||
|
||||
\begin{solution}
|
||||
$(-\infty, ~p]$
|
||||
|
||||
If the price of $\mathbb{X}$ rises, S will have to re-sell shares to B at a loss. \par
|
||||
If the price falls, B could choose to buy shares from S at a loss, but he won't. \par
|
||||
In this case, S only keeps the premium B paid for the contract.
|
||||
\end{solution}
|
||||
|
||||
|
||||
\vfill
|
||||
|
||||
\pagebreak
|
Loading…
x
Reference in New Issue
Block a user