Typos
This commit is contained in:
parent
8774a3ba59
commit
ea24c69100
@ -1,7 +1,7 @@
|
||||
% use [nosolutions] flag to hide solutions.
|
||||
% use [solutions] flag to show solutions.
|
||||
\documentclass[
|
||||
solutions,
|
||||
nosolutions,
|
||||
singlenumbering
|
||||
]{../../resources/ormc_handout}
|
||||
|
||||
|
@ -10,9 +10,9 @@ Draw $\mathbb{Z}^2$.
|
||||
\definition{}
|
||||
We say a set of vectors $\{v_1, v_2, ..., v_n\}$ \textit{generates} $\mathbb{Z}^n$ if every lattice point can be written uniquely as
|
||||
$$
|
||||
a_1v_1 + a_2v_2 + ... a_nv_n
|
||||
a_1v_1 + a_2v_2 + ... + a_nv_n
|
||||
$$
|
||||
for integer coeficcients $a_i$.
|
||||
for integer coefficients $a_i$.
|
||||
|
||||
\problem{}
|
||||
Which of the following generate $\mathbb{Z}^3$?
|
||||
@ -37,13 +37,13 @@ Find a set of vectors that generates $\mathbb{Z}^n$.
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\problem{}
|
||||
\definition{}
|
||||
A \textit{fundamental region} of a lattice is the parallelepiped spanned by a generating set. The exact shape of this region depends on the generating set we use.
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Draw two fundamental reions of $\mathbb{Z}^2$ using two different generating sets. Verify that their volumes are the same.
|
||||
Draw two fundamental regions of $\mathbb{Z}^2$ using two different generating sets. Verify that their volumes are the same.
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
@ -31,7 +31,7 @@ The following picture gives the idea for the proof of Blichfeldt's theorem. Expl
|
||||
|
||||
|
||||
\problem{}
|
||||
Let $X$ be a region $X$ of volume $k$. How many integral points must $X$ contain after a translation?
|
||||
Let $X$ be a region $\in \mathbb{R}^2$ of volume $k$. How many integral points must $X$ contain after a translation?
|
||||
|
||||
\vfill
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user