Reworked quantum handout
This commit is contained in:
parent
42a5626d97
commit
e8eb1a783e
@ -1,207 +0,0 @@
|
||||
\section*{Part 0: Vector Basics}
|
||||
|
||||
\definition{Vectors}
|
||||
An $n$-dimensional \textit{vector} is an element of $\mathbb{R}^n$. In this handout, we'll write vectors as columns. \par
|
||||
For example, $\left[\begin{smallmatrix} 1 \\ 3 \\ 2 \end{smallmatrix}\right]$ is a vector in $\mathbb{R}^3$.
|
||||
|
||||
|
||||
\definition{Euclidean norm}
|
||||
The length of an $n$-dimensional vector $v$ is computed as follows:
|
||||
\begin{equation*}
|
||||
|v| = \sqrt{v_1^2 + ... + v_n^2}
|
||||
\end{equation*}
|
||||
Where $v_1$ through $v_n$ represent individual components of this vector. For example,
|
||||
\begin{equation*}
|
||||
\left|\left[\begin{smallmatrix} 1 \\ 3 \\ 2 \end{smallmatrix}\right]\right| = \sqrt{1^2 + 3^2 + 2^2} = \sqrt{14}
|
||||
\end{equation*}
|
||||
|
||||
\definition{Transpose}
|
||||
The \textit{transpose} of a vector $v$ is $v^\text{T}$, given as follows:
|
||||
\begin{equation*}
|
||||
\left[\begin{smallmatrix} 1 \\ 3 \\ 2 \end{smallmatrix}\right]^\text{T}
|
||||
=
|
||||
\left[\begin{smallmatrix} 1 & 3 & 2 \end{smallmatrix}\right]
|
||||
\end{equation*}
|
||||
That is, we rewrite the vector with its rows as columns and its columns as rows. \par
|
||||
We can transpose matrices too, of course, but we'll get to that later.
|
||||
|
||||
|
||||
\problem{}
|
||||
What is the length of $\left[\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right]^\text{T}$? \par
|
||||
|
||||
\vfill
|
||||
|
||||
\definition{}
|
||||
We say a vector $v$ is a \textit{unit vector} or a \textit{normalized} vector if $|v| = 1$.
|
||||
\pagebreak
|
||||
|
||||
|
||||
\definition{Vector products}
|
||||
The \textit{dot product} of two $n$-dimensional vectors $v$ and $u$ is computed as follows:
|
||||
\begin{equation*}
|
||||
v \cdot u = v_0u_0 + v_1u_1 + ... + v_nu_n
|
||||
\end{equation*}
|
||||
|
||||
|
||||
\vfill
|
||||
|
||||
\definition{Vector angles}<vectorangle>
|
||||
For any two vectors $a$ and $b$, the following holds:
|
||||
|
||||
\null\hfill
|
||||
\begin{minipage}{0.48\textwidth}
|
||||
\begin{equation*}
|
||||
\cos{(\phi)} = \frac{a \cdot b}{|a| \times |b|}
|
||||
\end{equation*}
|
||||
\end{minipage}
|
||||
\hfill
|
||||
\begin{minipage}{0.48\textwidth}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=1.5]
|
||||
\draw[->] (0, 0) -- (0.707, 0.707);
|
||||
\draw[->, gray] (0.5, 0.0) arc (0:45:0.5);
|
||||
\node[gray] at (0.6, 0.22) {$\phi$};
|
||||
|
||||
\draw[->] (0, 0) -- (1.2, 0);
|
||||
\node[right] at (1.2, 0) {$a$};
|
||||
|
||||
\node[right] at (0.707, 0.707) {$b$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\hfill\null
|
||||
This can easily be shown using the law of cosines. \par
|
||||
For the sake of time, we'll skip the proof---it isn't directly relevant to this handout.
|
||||
|
||||
\definition{Orthogonal vectors}
|
||||
We say two vectors are \textit{perpendicular} or \textit{orthogonal} if the angle between them is $90^\circ$. \par
|
||||
Note that this definition works with vectors of any dimension.
|
||||
|
||||
\note{
|
||||
In fact, we don't need to think about other dimensions: two vectors in an $n$-dimensional space nearly always
|
||||
define a unique two-dimensional plane (with two exceptions: $\phi = 0^\circ$ and $\phi = 180^\circ$).
|
||||
}
|
||||
|
||||
|
||||
\problem{}
|
||||
What is the dot product of two orthogonal vectors?
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\definition{Linear combinations}
|
||||
A \textit{linear combination} of two or more vectors $v_1, v_2, ..., v_k$ is the weighted sum
|
||||
\begin{equation*}
|
||||
a_1v_1 + a_2v_2 + ... + a_kv_k
|
||||
\end{equation*}
|
||||
where $a_i$ are arbitrary real numbers.
|
||||
|
||||
|
||||
\definition{Linear dependence}
|
||||
We say a set of vectors $\{v_1, v_2, ..., v_k\}$ is \textit{linearly dependent} if we can write $0$ as a nontrivial
|
||||
linear combination of these vectors. For example, the following set is linearly dependent
|
||||
\begin{equation*}
|
||||
\Bigl\{
|
||||
\left[\begin{smallmatrix} 1 \\ 0 \end{smallmatrix}\right],
|
||||
\left[\begin{smallmatrix} 0 \\ 1 \end{smallmatrix}\right],
|
||||
\left[\begin{smallmatrix} 0.5 \\ 0.5 \end{smallmatrix}\right]
|
||||
\Bigr\}
|
||||
\end{equation*}
|
||||
Since $
|
||||
\left[\begin{smallmatrix} 1 \\ 0 \end{smallmatrix}\right] +
|
||||
\left[\begin{smallmatrix} 0 \\ 1 \end{smallmatrix}\right] -
|
||||
2 \left[\begin{smallmatrix} 0.5 \\ 0.5 \end{smallmatrix}\right]
|
||||
= 0
|
||||
$. A graphical representation of this is below.
|
||||
|
||||
\null\hfill
|
||||
\begin{minipage}{0.48\textwidth}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=1]
|
||||
\fill[color = black] (0, 0) circle[radius=0.05];
|
||||
|
||||
\node[right] at (1, 0) {$\left[\begin{smallmatrix} 1 \\ 0 \end{smallmatrix}\right]$};
|
||||
\node[above] at (0, 1) {$\left[\begin{smallmatrix} 0 \\ 1 \end{smallmatrix}\right]$};
|
||||
|
||||
\draw[->] (0, 0) -- (1, 0);
|
||||
\draw[->] (0, 0) -- (0, 1);
|
||||
\draw[->] (0, 0) -- (0.5, 0.5);
|
||||
\node[above right] at (0.5, 0.5) {$\left[\begin{smallmatrix} 0.5 \\ 0.5 \end{smallmatrix}\right]$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\hfill
|
||||
\begin{minipage}{0.48\textwidth}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=1]
|
||||
\fill[color = black] (0, 0) circle[radius=0.05];
|
||||
|
||||
\node[below] at (0.5, 0) {$\left[\begin{smallmatrix} 1 \\ 0 \end{smallmatrix}\right]$};
|
||||
\node[right] at (1, 0.5) {$\left[\begin{smallmatrix} 0 \\ 1 \end{smallmatrix}\right]$};
|
||||
|
||||
\draw[->] (0, 0) -- (0.95, 0);
|
||||
\draw[->] (1, 0) -- (1, 0.95);
|
||||
\draw[->] (1, 1) -- (0.55, 0.55);
|
||||
\draw[->] (0.5, 0.5) -- (0.05, 0.05);
|
||||
\node[above left] at (0.5, 0.5) {$-2\left[\begin{smallmatrix} 0.5 \\ 0.5 \end{smallmatrix}\right]$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\hfill\null
|
||||
|
||||
\problem{}
|
||||
Find a linearly independent set of vectors in $\mathbb{R}^3$
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
|
||||
\definition{Coordinates}
|
||||
Say we have a set of linearly independent vectors $B = \{b_1, ..., b_k\}$. \par
|
||||
We can write linear combinations of $B$ as \textit{coordinates} with respect to this set:
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
If we have a vector $v = x_1b_1 + x_2b_2 + ... + x_kb_k$, we can write $v = (x_1, x_2, ..., x_k)$ with respect to $B$.
|
||||
|
||||
|
||||
\vspace{4mm}
|
||||
|
||||
For example, take
|
||||
$B = \biggl\{
|
||||
\left[\begin{smallmatrix} 1 \\ 0 \\ 0 \end{smallmatrix}\right],
|
||||
\left[\begin{smallmatrix} 0 \\ 1 \\ 0\end{smallmatrix}\right],
|
||||
\left[\begin{smallmatrix} 0 \\ 0 \\ 1 \end{smallmatrix}\right]
|
||||
\biggr\}$ and $v = \left[\begin{smallmatrix} 8 \\ 3 \\ 9 \end{smallmatrix}\right]$
|
||||
|
||||
The coordinates of $v$ with respect to $B$ are, of course, $(8, 3, 9)$.
|
||||
|
||||
\problem{}
|
||||
What are the coordinates of $v$ with respect to the basis
|
||||
$B = \biggl\{
|
||||
\left[\begin{smallmatrix} 1 \\ 0 \\ 1 \end{smallmatrix}\right],
|
||||
\left[\begin{smallmatrix} 0 \\ 1 \\ 0\end{smallmatrix}\right],
|
||||
\left[\begin{smallmatrix} 0 \\ 0 \\ -1 \end{smallmatrix}\right]
|
||||
\biggr\}$?
|
||||
|
||||
|
||||
|
||||
|
||||
%For example, the set $\{[1,0,0], [0,1,0], [0,0,1]\}$ (which we usually call $\{x, y, z\})$
|
||||
%forms an orthonormal basis of $\mathbb{R}^3$. Every element of $\mathbb{R}^3$ can be written as a linear combination of these vectors:
|
||||
%
|
||||
%\begin{equation*}
|
||||
% \left[\begin{smallmatrix} a \\ b \\ c \end{smallmatrix}\right]
|
||||
% =
|
||||
% a \left[\begin{smallmatrix} 1 \\ 0 \\ 0 \end{smallmatrix}\right] +
|
||||
% b \left[\begin{smallmatrix} 0 \\ 1 \\ 0 \end{smallmatrix}\right] +
|
||||
% c \left[\begin{smallmatrix} 0 \\ 0 \\ 1 \end{smallmatrix}\right]
|
||||
%\end{equation*}
|
||||
%
|
||||
%The tuple $[a,b,c]$ is called the \textit{coordinate} of a point with respect to this basis.
|
||||
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
@ -1,199 +1,591 @@
|
||||
\section{One Bit}
|
||||
Before we discuss quantum computation, we first need to construct a few tools. \par
|
||||
To keep things simple, we'll use regular (usually called \textit{classical}) bits for now.
|
||||
\section{Probabilistic Bits}
|
||||
|
||||
|
||||
\definition{}
|
||||
|
||||
|
||||
|
||||
\definition{Binary Digits}
|
||||
$\mathbb{B}$ is the set of binary digits. In other words, $\mathbb{B} = \{\texttt{0}, \texttt{1}\}$. \par
|
||||
\note[Note]{We've seen $\mathbb{B}$ before---it's the set of integers mod 2.}
|
||||
As we already know, a \textit{classical bit} may take the values \texttt{0} and \texttt{1}. \par
|
||||
We can model this with a two-sided coin, one face of which is labeled \texttt{0}, and the other, \texttt{1}. \par
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
Of course, if we toss such a \say{bit-coin,} we'll get either \texttt{0} or \texttt{1}. \par
|
||||
We'll denote the probability of getting \texttt{0} as $p_0$, and the probability of getting \texttt{1} as $p_1$. \par
|
||||
As with all probabilities, $p_0 + p_1$ must be equal to 1.
|
||||
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
\definition{}
|
||||
|
||||
\definition{Cartesian Products}
|
||||
Let $A$ and $B$ be sets. \par
|
||||
The \textit{cartesian product} $A \times B$ is the set of all pairs $(a, b)$ where $a \in A$ and $b \in B$. \par
|
||||
As usual, we can write $A \times A \times A$ as $A^3$. \par
|
||||
Say we toss a \say{bit-coin} and don't observe the result. We now have a \textit{probabilistic bit}, with a probability $p_0$
|
||||
of being \texttt{0}, and a probability $p_1$ of being \texttt{1}.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
In this handout, we'll often see the following sets:
|
||||
We'll represent this probabilistic bit's \textit{state} as a vector:
|
||||
$\left[\begin{smallmatrix}
|
||||
p_0 \\ p_1
|
||||
\end{smallmatrix}\right]$ \par
|
||||
We do \textbf{not} assume this coin is fair, and thus $p_0$ might not equal $p_1$.
|
||||
|
||||
\note{
|
||||
This may seem a bit redundant: since $p_0 + p_1$, we can always calculate one probability given the other. \\
|
||||
We'll still include both probabilities in the state vector, since this provides a clearer analogy to quantum bits.
|
||||
}
|
||||
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
\definition{}
|
||||
|
||||
The simplest probabilistic bit states are of course $[0]$ and $[1]$, defined as follows:
|
||||
\begin{itemize}
|
||||
\item $\mathbb{R}^2$, a two-dimensional plane
|
||||
\item $\mathbb{R}^n$, an n-dimensional space
|
||||
\item $\mathbb{B}^2$, the set
|
||||
$\{(\texttt{0},\texttt{0}), (\texttt{0},\texttt{1}), (\texttt{1},\texttt{0}), (\texttt{1},\texttt{1})\}$
|
||||
\item $\mathbb{B}^n$, the set of all possible states of $n$ bits.
|
||||
\item $[0] = \left[\begin{smallmatrix} 1 \\ 0 \end{smallmatrix}\right]$
|
||||
\item $[1] = \left[\begin{smallmatrix} 0 \\ 1 \end{smallmatrix}\right]$
|
||||
\end{itemize}
|
||||
That is, $[0]$ represents a bit that we known to be \texttt{0}, \par
|
||||
and $[1]$ represents a bit we know to be \texttt{1}.
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
\definition{}
|
||||
$[0]$ and $[1]$ form a \textit{basis} for all possible probabilistic bit states: \par
|
||||
Every other probabilistic bit can be written as a \textit{linear combination} of $[0]$ and $[1]$:
|
||||
|
||||
\begin{equation*}
|
||||
\begin{bmatrix} p_0 \\ p_1 \end{bmatrix}
|
||||
=
|
||||
p_0 \begin{bmatrix} 1 \\ 0 \end{bmatrix} +
|
||||
p_1 \begin{bmatrix} 0 \\ 1 \end{bmatrix}
|
||||
=
|
||||
p_0 [0] + p_1 [1]
|
||||
\end{equation*}
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\problem{}
|
||||
Every possible state of a probabilistic bit is a two-dimensional vector. \par
|
||||
Draw all possible states on the axis below.
|
||||
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale = 2.0]
|
||||
\fill[color = black] (0, 0) circle[radius=0.05];
|
||||
\node[below left] at (0, 0) {$\left[\begin{smallmatrix} 0 \\ 0 \end{smallmatrix}\right]$};
|
||||
|
||||
\draw[->] (0, 0) -- (1.2, 0);
|
||||
\node[right] at (1.2, 0) {$p_0$};
|
||||
\fill[color = oblue] (1, 0) circle[radius=0.05];
|
||||
\node[below] at (1, 0) {$[0]$};
|
||||
|
||||
\draw[->] (0, 0) -- (0, 1.2);
|
||||
\node[above] at (0, 1.2) {$p_1$};
|
||||
\fill[color = oblue] (0, 1) circle[radius=0.05];
|
||||
\node[left] at (0, 1) {$[1]$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
\begin{solution}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale = 2.0]
|
||||
\fill[color = black] (0, 0) circle[radius=0.05];
|
||||
\node[below left] at (0, 0) {$\left[\begin{smallmatrix} 0 \\ 0 \end{smallmatrix}\right]$};
|
||||
|
||||
\draw[ored, -, line width = 2] (0, 1) -- (1, 0);
|
||||
|
||||
|
||||
\draw[->] (0, 0) -- (1.2, 0);
|
||||
\node[right] at (1.2, 0) {$p_0$};
|
||||
\fill[color = oblue] (1, 0) circle[radius=0.05];
|
||||
\node[below] at (1, 0) {$[0]$};
|
||||
|
||||
\draw[->] (0, 0) -- (0, 1.2);
|
||||
\node[above] at (0, 1.2) {$p_1$};
|
||||
\fill[color = oblue] (0, 1) circle[radius=0.05];
|
||||
\node[left] at (0, 1) {$[1]$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{solution}
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\section{Measuring Probabilistic Bits}
|
||||
|
||||
|
||||
\definition{}
|
||||
As we noted before, a probabilistic bit represents a coin we've tossed but haven't looked at. \par
|
||||
We do not know whether the bit is \texttt{0} or \texttt{1}, but we do know the probability of both of these outcomes. \par
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
If we \textit{measure} (or \textit{observe}) a probabilistic bit, we see either \texttt{0} or \texttt{1}---and thus our
|
||||
knowledge of its state is updated to either $[0]$ or $[1]$, since we now certainly know what face the coin landed on.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
Since measurement changes what we know about a probabilistic bit, it changes the probabilistic bit's state.
|
||||
When we measure a bit, it's state \textit{collapses} to either $[0]$ or $[1]$, and the original state of the
|
||||
bit vanishes. We \textit{cannot} recover the state $[x_0, x_1]$ from a measured probabilistic bit.
|
||||
|
||||
|
||||
\definition{Multiple bits}
|
||||
Say we have two probabilistic bits, $x$ and $y$, \par
|
||||
with states
|
||||
$[x]=[ x_0, x_1]$
|
||||
and
|
||||
$[y]=[y_0, y_1]$
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
The \textit{compound state} of $[x]$ and $[y]$ is exactly what it sounds like: \par
|
||||
It is the probabilistic two-bit state $\ket{xy}$, where the probabilities of the first bit are
|
||||
determined by $[x]$, and the probabilities of the second are determined by $[y]$.
|
||||
|
||||
|
||||
|
||||
|
||||
\problem{}<firstcompoundstate>
|
||||
Say $[x] = [\nicefrac{2}{3}, \nicefrac{1}{3}]$ and $[y] = [\nicefrac{3}{4}, \nicefrac{1}{4}]$. \par
|
||||
\begin{itemize}[itemsep = 1mm]
|
||||
\item If we measure $x$ and $y$ simultaneously, \par
|
||||
what is the probability of getting each of \texttt{00}, \texttt{01}, \texttt{10}, and \texttt{11}?
|
||||
|
||||
|
||||
\item If we measure $y$ first and observe \texttt{1}, \par
|
||||
what is the probability of getting each of \texttt{00}, \texttt{01}, \texttt{10}, and \texttt{11}?
|
||||
\end{itemize}
|
||||
\note[Note]{$[x]$ and $[y]$ are column vectors, but I've written them horizontally to save space.}
|
||||
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
With $x$ and $y$ defined as above, find the probability of measuring each of \texttt{00}, \texttt{01}, \texttt{10}, and \texttt{11}.
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Say $[x] = [\nicefrac{2}{3}, \nicefrac{1}{3}]$ and $[y] = [\nicefrac{3}{4}, \nicefrac{1}{4}]$. \par
|
||||
What is the probability that $x$ and $y$ produce different outcomes?
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\section{Tensor Products}
|
||||
|
||||
\definition{Tensor Products}
|
||||
The \textit{tensor product} of two vectors is defined as follows:
|
||||
\begin{equation*}
|
||||
\begin{bmatrix}
|
||||
x_1 \\ x_2
|
||||
\end{bmatrix}
|
||||
\otimes
|
||||
\begin{bmatrix}
|
||||
y_1 \\ y_2
|
||||
\end{bmatrix}
|
||||
=
|
||||
\begin{bmatrix}
|
||||
x_1
|
||||
\begin{bmatrix}
|
||||
y_1 \\ y_2
|
||||
\end{bmatrix}
|
||||
|
||||
\\[4mm]
|
||||
|
||||
x_2
|
||||
\begin{bmatrix}
|
||||
y_1 \\ y_2
|
||||
\end{bmatrix}
|
||||
\end{bmatrix}
|
||||
=
|
||||
\begin{bmatrix}
|
||||
x_1y_1 \\[1mm]
|
||||
x_1y_2 \\[1mm]
|
||||
x_2y_1 \\[1mm]
|
||||
x_2y_2 \\[0.5mm]
|
||||
\end{bmatrix}
|
||||
\end{equation*}
|
||||
|
||||
|
||||
That is, we take our first vector, multiply the second
|
||||
vector by each of its components, and stack the result.
|
||||
You could think of this as a generalization of scalar
|
||||
mulitiplication, where scalar mulitiplication is a
|
||||
tensor product with a vector in $\mathbb{R}^1$:
|
||||
\begin{equation*}
|
||||
a
|
||||
\begin{bmatrix}
|
||||
x_1 \\ x_2
|
||||
\end{bmatrix}
|
||||
=
|
||||
\begin{bmatrix}
|
||||
a_1
|
||||
\end{bmatrix}
|
||||
\otimes
|
||||
\begin{bmatrix}
|
||||
y_1 \\ y_2
|
||||
\end{bmatrix}
|
||||
=
|
||||
\begin{bmatrix}
|
||||
a_1
|
||||
\begin{bmatrix}
|
||||
y_1 \\ y_2
|
||||
\end{bmatrix}
|
||||
\end{bmatrix}
|
||||
=
|
||||
\begin{bmatrix}
|
||||
a_1y_1 \\[1mm]
|
||||
a_1y_2
|
||||
\end{bmatrix}
|
||||
\end{equation*}
|
||||
|
||||
\problem{}
|
||||
Say $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^m$. \par
|
||||
What is the dimension of $x \otimes y$?
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}<basistp>
|
||||
What is the pairwise tensor product
|
||||
$
|
||||
\Bigl\{
|
||||
\left[
|
||||
\begin{smallmatrix}
|
||||
1 \\ 0 \\ 0
|
||||
\end{smallmatrix}
|
||||
\right],
|
||||
\left[
|
||||
\begin{smallmatrix}
|
||||
0 \\ 1 \\ 0
|
||||
\end{smallmatrix}
|
||||
\right],
|
||||
\left[
|
||||
\begin{smallmatrix}
|
||||
0 \\ 0 \\ 1
|
||||
\end{smallmatrix}
|
||||
\right]
|
||||
\Bigr\}
|
||||
\otimes
|
||||
\Bigl\{
|
||||
\left[
|
||||
\begin{smallmatrix}
|
||||
1 \\ 0
|
||||
\end{smallmatrix}
|
||||
\right],
|
||||
\left[
|
||||
\begin{smallmatrix}
|
||||
0 \\ 1
|
||||
\end{smallmatrix}
|
||||
\right]
|
||||
\Bigr\}
|
||||
$?
|
||||
|
||||
\note{in other words, distribute the tensor product between every pair of vectors.}
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
What is the \textit{span} of the vectors we found in \ref{basistp}? \par
|
||||
In other words, what is the set of vectors that can be written as linear combinations of the vectors above?
|
||||
|
||||
\vfill
|
||||
|
||||
Look through the above problems and convince yourself of the following fact: \par
|
||||
If $a$ is a basis of $A$ and $b$ is a basis of $B$, $a \otimes b$ is a basis of $A \times B$. \par
|
||||
\note{If you don't understand what this says, ask an instructor. \\ This is the reason we did the last few problems!}
|
||||
|
||||
\begin{instructornote}
|
||||
\textbf{The idea here is as follows:}
|
||||
|
||||
If $a$ is in $\{\texttt{0}, \texttt{1}\}$ and $b$ is in $\{\texttt{0}, \texttt{1}\}$,
|
||||
the values $ab$ can take are
|
||||
$\{\texttt{0}, \texttt{1}\} \times \{\texttt{0}, \texttt{1}\} = \{\texttt{00}, \texttt{01}, \texttt{10}, \texttt{11}\}$.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
The same is true of any other state set: if $a$ takes values in $A$ and $b$ takes values in $B$, \par
|
||||
the compound state $(a,b)$ takes values in $A \times B$.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
We would like to do the same with probabilistic bits. \par
|
||||
Given bits $\ket{a}$ and $\ket{b}$, how should we represent the state of $\ket{ab}$?
|
||||
\end{instructornote}
|
||||
|
||||
\pagebreak
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
Say $[x] = [\nicefrac{2}{3}, \nicefrac{1}{3}]$ and $[y] = [\nicefrac{3}{4}, \nicefrac{1}{4}]$. \par
|
||||
What is $[x] \otimes [y]$? How does this relate to \ref{firstcompoundstate}?
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
The compound state of two vector-form bits is their tensor product. \par
|
||||
Compute the following. Is the result what we'd expect?
|
||||
\begin{itemize}
|
||||
\item $[0] \otimes [0]$
|
||||
\item $[0] \otimes [1]$
|
||||
\item $[1] \otimes [0]$
|
||||
\item $[1] \otimes [1]$
|
||||
\end{itemize}
|
||||
\hint{
|
||||
Remember that
|
||||
$[0] = \left[\begin{smallmatrix} 1 \\ 0 \end{smallmatrix}\right]$
|
||||
and
|
||||
$[1] = \left[\begin{smallmatrix} 0 \\ 1 \end{smallmatrix}\right]$.
|
||||
}
|
||||
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\problem{}<fivequant>
|
||||
Of course, writing $[0] \otimes [1]$ is a bit excessive. We'll shorten this notation to $[01]$. \par
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
In fact, we could go further: if we wanted to write the set of bits $[1] \otimes [1] \otimes [0] \otimes [1]$, \par
|
||||
we could write $[1101]$---but a shorter alternative is $[13]$, since $13$ is \texttt{1101} in binary.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
Write $[5]$ as three-bit probabilistic state. \par
|
||||
|
||||
\begin{solution}
|
||||
$[5] = [101] = [1] \otimes [0] \otimes [1] = [0,0,0,0,0,1,0,0]^T$ \par
|
||||
Notice how we're counting from the top, with $[000] = [1,0,...,0]$ and $[111] = [0, ..., 0, 1]$.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
Write the three-bit states $[0]$ through $[7]$ as column vectors. \par
|
||||
\hint{You do not need to compute every tensor product. Do a few and find the pattern.}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\section{Operations on Probabilistic Bits}
|
||||
|
||||
Now that we can write probabilistic bits as vectors, we can represent operations on these bits
|
||||
with linear transformations---in other words, as matrices.
|
||||
|
||||
\definition{}
|
||||
Consider the NOT gate, which operates as follows: \par
|
||||
\begin{itemize}
|
||||
\item $\text{NOT}[0] = [1]$
|
||||
\item $\text{NOT}[1] = [0]$
|
||||
\end{itemize}
|
||||
What should NOT do to a probabilistic bit $[x_0, x_1]$? \par
|
||||
If we return to our coin analogy, we can think of the NOT operation as
|
||||
flipping a coin we have already tossed, without looking at it's state.
|
||||
Thus,
|
||||
\begin{equation*}
|
||||
\text{NOT} \begin{bmatrix}
|
||||
x_0 \\ x_1
|
||||
\end{bmatrix} = \begin{bmatrix}
|
||||
x_1 \\ x_0
|
||||
\end{bmatrix}
|
||||
\end{equation*}
|
||||
|
||||
|
||||
\begin{ORMCbox}{Review: Matrix Multiplication}{black!10!white}{black!65!white}
|
||||
Matrix multiplication works as follows:
|
||||
|
||||
\begin{equation*}
|
||||
AB =
|
||||
\begin{bmatrix}
|
||||
1 & 2 \\
|
||||
3 & 4 \\
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix}
|
||||
a_0 & b_0 \\
|
||||
a_1 & b_1 \\
|
||||
\end{bmatrix}
|
||||
=
|
||||
\begin{bmatrix}
|
||||
1a_0 + 2a_1 & 1b_0 + 2b_1 \\
|
||||
3a_0 + 4a_1 & 3b_0 + 4b_1 \\
|
||||
\end{bmatrix}
|
||||
\end{equation*}
|
||||
|
||||
|
||||
Note that this is very similar to multiplying each column of $B$ by $A$. \par
|
||||
The product $AB$ is simply $Ac$ for every column $c$ in $B$:
|
||||
|
||||
\begin{equation*}
|
||||
Ac_0 =
|
||||
\begin{bmatrix}
|
||||
1 & 2 \\
|
||||
3 & 4 \\
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix}
|
||||
a_0 \\ a_1
|
||||
\end{bmatrix}
|
||||
=
|
||||
\begin{bmatrix}
|
||||
1a_0 + 2a_1 \\
|
||||
3a_0 + 4a_1
|
||||
\end{bmatrix}
|
||||
\end{equation*}
|
||||
|
||||
This is exactly the first column of the matrix product. \par
|
||||
Also, note that each element of $Ac_0$ is the dot product of a row in $A$ and a column in $c_0$.
|
||||
\end{ORMCbox}
|
||||
|
||||
\problem{}
|
||||
Compute the following product:
|
||||
\begin{equation*}
|
||||
\begin{bmatrix}
|
||||
1 & 0.5 \\ 0 & 1
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix}
|
||||
3 \\ 2
|
||||
\end{bmatrix}
|
||||
\end{equation*}
|
||||
|
||||
|
||||
\vfill
|
||||
|
||||
\generic{Remark:}
|
||||
Also, recall that every matrix is linear map, and that every linear map may be written as a matrix. \par
|
||||
We often use the terms \textit{matrix}, \textit{transformation}, and \textit{linear map} interchangably.
|
||||
|
||||
\pagebreak
|
||||
|
||||
|
||||
\problem{}
|
||||
Find the matrix that represents the NOT operation on one probabilistic bit.
|
||||
|
||||
\begin{solution}
|
||||
\begin{equation*}
|
||||
\begin{bmatrix}
|
||||
0 & 1 \\ 1 & 0
|
||||
\end{bmatrix}
|
||||
\end{equation*}
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
\problem{Extension by linearity}
|
||||
Say we have an arbitrary operation $A$. \par
|
||||
If we know how $A$ acts on $[1]$ and $[0]$, can we compute $A[x]$ for an arbitrary state $[x]$? \par
|
||||
Say $[x] = [x_0, x_1]$.
|
||||
\begin{itemize}
|
||||
\item What is the probability we observe $0$ when we measure $x$?
|
||||
\item What is the probability that we observe $M[0]$ when we measure $Mx$?
|
||||
\end{itemize}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}<linearextension>
|
||||
Write $M[x_0, x_1]$ in terms of $M[0]$, $M[1]$, $x_0$, and $x_1$.
|
||||
|
||||
|
||||
\begin{solution}
|
||||
\begin{equation*}
|
||||
M \begin{bmatrix}
|
||||
x_0 \\ x_1
|
||||
\end{bmatrix}
|
||||
=
|
||||
x_0 M \begin{bmatrix}
|
||||
1 \\ 0
|
||||
\end{bmatrix}
|
||||
+
|
||||
x_1 M \begin{bmatrix}
|
||||
0 \\ 1
|
||||
\end{bmatrix}
|
||||
=
|
||||
x_0 M [0] +
|
||||
x_1 M [1]
|
||||
\end{equation*}
|
||||
\end{solution}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
What is the size of $\mathbb{B}^n$?
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
% NOTE: this is time-travelled later in the handout.
|
||||
% if you edit this, edit that too.
|
||||
\generic{Remark:}
|
||||
Consider a single classical bit. It takes states in $\{\texttt{0}, \texttt{1}\}$, picking one at a time. \par
|
||||
We'll write the states \texttt{0} and \texttt{1} as orthogonal unit vectors, labeled $\vec{e}_0$ and $\vec{e}_1$:
|
||||
Every matrix represents a \textit{linear} map, so the following is always true:
|
||||
\begin{equation*}
|
||||
A \times (px + qy) = pAx + qAy
|
||||
\end{equation*}
|
||||
\ref{linearextension} is just a special case of this fact.
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=1.5]
|
||||
\fill[color = black] (0, 0) circle[radius=0.05];
|
||||
|
||||
\draw[->] (0, 0) -- (1.5, 0);
|
||||
\node[right] at (1.5, 0) {$\vec{e}_0$ axis};
|
||||
\fill[color = oblue] (1, 0) circle[radius=0.05];
|
||||
\node[below] at (1, 0) {\texttt{0}};
|
||||
|
||||
\draw[->] (0, 0) -- (0, 1.5);
|
||||
\node[above] at (0, 1.5) {$\vec{e}_1$ axis};
|
||||
\fill[color = oblue] (0, 1) circle[radius=0.05];
|
||||
\node[left] at (0, 1) {\texttt{1}};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
|
||||
The point marked $1$ is at $[0, 1]$. It is no parts $\vec{e}_0$, and all parts $\vec{e}_1$. \par
|
||||
Of course, we can say something similar about the point marked $0$: \par
|
||||
It is at $[1, 0] = (1 \times \vec{e}_0) + (0 \times \vec{e}_1)$, and is thus all $\vec{e}_0$ and no $\vec{e}_1$. \par
|
||||
\note[Note]{$[0, 1]$ and $[1, 0]$ are coordinates in the basis $\{\vec{e}_0, \vec{e}_1\}$}
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
We could, of course, mark the point \texttt{x} at $[1, 1]$ which is equal parts $\vec{e}_0$ and $\vec{e}_1$: \par
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=1.5]
|
||||
\fill[color = black] (0, 0) circle[radius=0.05];
|
||||
|
||||
\draw[->] (0, 0) -- (1.5, 0);
|
||||
\node[right] at (1.5, 0) {$\vec{e}_0$};
|
||||
|
||||
\draw[->] (0, 0) -- (0, 1.5);
|
||||
\node[above] at (0, 1.5) {$\vec{e}_1$};
|
||||
|
||||
\fill[color = oblue] (1, 0) circle[radius=0.05];
|
||||
\node[below] at (1, 0) {\texttt{0}};
|
||||
|
||||
\fill[color = oblue] (0, 1) circle[radius=0.05];
|
||||
\node[left] at (0, 1) {\texttt{1}};
|
||||
|
||||
\draw[dashed, color = gray, ->] (0, 0) -- (0.9, 0.9);
|
||||
\fill[color = oblue] (1, 1) circle[radius=0.05];
|
||||
\node[above right] at (1, 1) {\texttt{x}};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
|
||||
\vspace{4mm}
|
||||
|
||||
But \texttt{x} isn't a member of $\mathbb{B}$---it's not a state that a classical bit can take. \par
|
||||
By our current definitions, the \textit{only} valid states of a bit are $\texttt{0} = [1, 0]$ and $\texttt{1} = [0, 1]$.
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\definition{Vectored Bits}
|
||||
This brings us to what we'll call the \textit{vectored representation} of a bit. \par
|
||||
Instead of writing our bits as just \texttt{0} and \texttt{1}, we'll break them into their $\vec{e}_0$ and $\vec{e}_1$ components: \par
|
||||
|
||||
\null\hfill
|
||||
\begin{minipage}{0.48\textwidth}
|
||||
\[ \ket{0} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = (1 \times \vec{e}_0) + (0 \times \vec{e}_1) \]
|
||||
\end{minipage}
|
||||
\hfill
|
||||
\begin{minipage}{0.48\textwidth}
|
||||
\[ \ket{1} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} = (0 \times \vec{e}_0) + (1 \times \vec{e}_1) \]
|
||||
\end{minipage}
|
||||
\hfill\null
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
This may seem needlessly complex---and it is, for classical bits. \par
|
||||
We'll see why this is useful soon enough.
|
||||
|
||||
\vspace{4mm}
|
||||
|
||||
The $\ket{~}$ you see in the two expressions above is called a \say{ket,} and denotes a column vector. \par
|
||||
$\ket{0}$ is pronounced \say{ket zero,} and $\ket{1}$ is pronounced \say{ket one.} This is called bra-ket notation. \par
|
||||
\note[Note]{$\bra{0}$ is called a \say{bra,} but we won't worry about that for now.}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
Write \texttt{x} and \texttt{y} in the diagram below in terms of $\ket{0}$ and $\ket{1}$. \par
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=1.5]
|
||||
\fill[color = black] (0, 0) circle[radius=0.05];
|
||||
|
||||
\draw[->] (0, 0) -- (1.5, 0);
|
||||
\node[right] at (1.5, 0) {$\vec{e}_0$ axis};
|
||||
|
||||
\draw[->] (0, 0) -- (0, 1.5);
|
||||
\node[above] at (0, 1.5) {$\vec{e}_1$ axis};
|
||||
|
||||
\fill[color = oblue] (1, 0) circle[radius=0.05];
|
||||
\node[below] at (1, 0) {$\ket{0}$};
|
||||
|
||||
\fill[color = oblue] (0, 1) circle[radius=0.05];
|
||||
\node[left] at (0, 1) {$\ket{1}$};
|
||||
|
||||
\draw[dashed, color = gray, ->] (0, 0) -- (0.9, 0.9);
|
||||
\fill[color = ored] (1, 1) circle[radius=0.05];
|
||||
\node[above right] at (1, 1) {\texttt{x}};
|
||||
|
||||
\draw[dashed, color = gray, ->] (0, 0) -- (-0.9, 0.9);
|
||||
\fill[color = ored] (-1, 1) circle[radius=0.05];
|
||||
\node[above right] at (-1, 1) {\texttt{y}};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
347
Advanced/Introduction to Quantum/parts/02 qubit.tex
Normal file
347
Advanced/Introduction to Quantum/parts/02 qubit.tex
Normal file
@ -0,0 +1,347 @@
|
||||
\section{One Qubit}
|
||||
|
||||
Quantum bits (or \textit{qubits}) are very similar to probabilistic bits, but have one major difference: \par
|
||||
probabilities are replaced with \textit{amplitudes}.
|
||||
|
||||
\vspace{2mm}
|
||||
Of course, a qubit can take the values \texttt{0} and \texttt{1}, which are denoted $\ket{0}$ and $\ket{1}$. \par
|
||||
Like probabilistic bits, a quantum bit is written as a linear combination of $\ket{0}$ and $\ket{1}$:
|
||||
\begin{equation*}
|
||||
\ket{\psi} = \psi_0\ket{0} + \psi_1\ket{1}
|
||||
\end{equation*}
|
||||
Such linear combinations are called \textit{superpositions}.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
The $\ket{~}$ you see in the expressions above is called a \say{ket,} and denotes a column vector. \par
|
||||
$\ket{0}$ is pronounced \say{ket zero,} and $\ket{1}$ is pronounced \say{ket one.} This is called bra-ket notation. \par
|
||||
\note[Note]{$\bra{0}$ is called a \say{bra,} but we won't worry about that for now.}
|
||||
|
||||
\vspace{2mm}
|
||||
This is very similiar to the \say{box} $[~]$ notation we used for probabilistic bits. \par
|
||||
As before, we will write $\ket{0} = \left[\begin{smallmatrix} 1 \\ 0 \end{smallmatrix}\right]$
|
||||
and $\ket{1} = \left[\begin{smallmatrix} 0 \\ 1 \end{smallmatrix}\right]$.
|
||||
|
||||
|
||||
\vspace{8mm}
|
||||
|
||||
Recall that probabilistic bits are subject to the restriction that $p_0 + p_1 = 1$. \par
|
||||
Quantum bits have a similar condition: $\psi_0^2 + \psi_1^2 = 1$. \par
|
||||
Note that this implies that $\psi_0$ and $\psi_1$ are both in $[-1, 1]$: \par
|
||||
Quantum amplitudes may be negative, but probabilistic bit probabilities cannot.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
If we plot the set of valid quantum states on our plane, we get a unit circle centered at the origin:
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=1.5]
|
||||
\draw[dashed] (0,0) circle(1);
|
||||
|
||||
\fill[color = black] (0, 0) circle[radius=0.05];
|
||||
|
||||
\draw[->] (0, 0) -- (1.2, 0);
|
||||
\fill[color = oblue] (1, 0) circle[radius=0.05];
|
||||
\node[below right] at (1, 0) {$\ket{0}$};
|
||||
|
||||
\draw[->] (0, 0) -- (0, 1.2);
|
||||
\fill[color = oblue] (0, 1) circle[radius=0.05];
|
||||
\node[above left] at (0, 1) {$\ket{1}$};
|
||||
|
||||
\fill[color = ored] (0.87, 0.5) circle[radius=0.05];
|
||||
\node[above right] at (0.87, 0.5) {$\ket{\psi}$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
|
||||
|
||||
Recall that the set of probabilistic bits forms a line instead:
|
||||
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale = 1.5]
|
||||
\fill[color = black] (0, 0) circle[radius=0.05];
|
||||
\node[below left] at (0, 0) {$\left[\begin{smallmatrix} 0 \\ 0 \end{smallmatrix}\right]$};
|
||||
|
||||
\draw[ored, -, line width = 2] (0, 1) -- (1, 0);
|
||||
|
||||
|
||||
\draw[->] (0, 0) -- (1.2, 0);
|
||||
\node[right] at (1.2, 0) {$p_0$};
|
||||
\fill[color = oblue] (1, 0) circle[radius=0.05];
|
||||
\node[below] at (1, 0) {$[0]$};
|
||||
|
||||
\draw[->] (0, 0) -- (0, 1.2);
|
||||
\node[above] at (0, 1.2) {$p_1$};
|
||||
\fill[color = oblue] (0, 1) circle[radius=0.05];
|
||||
\node[left] at (0, 1) {$[1]$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
|
||||
\problem{}
|
||||
In the above unit circle, the counterclockwise angle from $\ket{0}$ to $\ket{\psi}$ is $30^\circ$\hspace{-1ex}. \par
|
||||
Write $\ket{\psi}$ as a linear combination of $\ket{0}$ and $\ket{1}$.
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
\definition{Measurement I}
|
||||
Just like a probabilistic bit, we must observed $\ket{0}$ or $\ket{1}$ when we measure a qubit. \par
|
||||
If we were to measure $\ket{\psi} = \psi_0\ket{0} + \psi_1\ket{1}$, we'd observe either $\ket{0}$ or $\ket{1}$, \par
|
||||
with the following probabilities:
|
||||
\begin{itemize}[itemsep = 2mm, topsep = 2mm]
|
||||
\item $\mathcal{P}(\ket{1}) = \psi_1^2$
|
||||
\item $\mathcal{P}(\ket{0}) = \psi_0^2$
|
||||
\end{itemize}
|
||||
\note{Note that $\mathcal{P}(\ket{0}) + \mathcal{P}(\ket{1}) = 1$.}
|
||||
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
As before, $\ket{\psi}$ \textit{collapses} when it is measured: its state becomes that which we observed in our measurement,
|
||||
leaving no trace of the previous superposition. \par
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
\begin{itemize}
|
||||
\item What is the probability we observe $\ket{0}$ when we measure $\ket{\psi}$? \par
|
||||
\item What can we observe if we measure $\ket{\psi}$ a second time? \par
|
||||
\item What are these probabilities for $\ket{\varphi}$?
|
||||
\end{itemize}
|
||||
|
||||
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=1.5]
|
||||
\draw[dashed] (0,0) circle(1);
|
||||
|
||||
\fill[color = black] (0, 0) circle[radius=0.05];
|
||||
|
||||
\draw[->] (0, 0) -- (1.2, 0);
|
||||
\fill[color = oblue] (1, 0) circle[radius=0.05];
|
||||
\node[below right] at (1, 0) {$\ket{0}$};
|
||||
|
||||
\draw[->] (0, 0) -- (0, 1.2);
|
||||
\fill[color = oblue] (0, 1) circle[radius=0.05];
|
||||
\node[above left] at (0, 1) {$\ket{1}$};
|
||||
|
||||
\draw[dotted] (0, 0) -- (0.87, 0.5);
|
||||
\draw[color=gray,->] (0.5, 0.0) arc (0:30:0.5);
|
||||
\node[right, color=gray] at (0.47, 0.12) {$30^\circ$};
|
||||
\fill[color = ored] (0.87, 0.5) circle[radius=0.05];
|
||||
\node[above right] at (0.87, 0.5) {$\ket{\psi}$};
|
||||
|
||||
|
||||
\draw[dotted] (0, 0) -- (-0.707, -0.707);
|
||||
\draw[color=gray,->] (0.25, 0.0) arc (0:-135:0.25);
|
||||
\node[below, color=gray] at (0.2, -0.2) {$135^\circ$};
|
||||
\fill[color = ored] (-0.707, -0.707) circle[radius=0.05];
|
||||
\node[below left] at (-0.707, -0.707) {$\ket{\varphi}$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
|
||||
|
||||
\vfill
|
||||
|
||||
As you may have noticed, we don't need two coordinates to fully define a quibit's state. \par
|
||||
We can get by with one coordinate just as well.
|
||||
|
||||
Instead of referring to each state using its cartesian coordinates $\psi_0$ and $\psi_1$, \par
|
||||
we can address it using its \textit{polar angle} $\theta$, measured from $\ket{0}$ counterclockwise:
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=1.5]
|
||||
\draw[dashed] (0,0) circle(1);
|
||||
\fill[color = black] (0, 0) circle[radius=0.05];
|
||||
|
||||
\draw[dotted] (0, 0) -- (0.707, 0.707);
|
||||
\draw[color=gray,->] (0.5, 0.0) arc (0:45:0.5);
|
||||
\node[above right, color=gray] at (0.5, 0) {$\theta$};
|
||||
|
||||
\draw[->] (0, 0) -- (1.2, 0);
|
||||
\fill[color = oblue] (1, 0) circle[radius=0.05];
|
||||
\node[below right] at (1, 0) {$\ket{0}$};
|
||||
|
||||
\draw[->] (0, 0) -- (0, 1.2);
|
||||
\fill[color = oblue] (0, 1) circle[radius=0.05];
|
||||
\node[above left] at (0, 1) {$\ket{1}$};
|
||||
|
||||
\fill[color = ored] (0.707, 0.707) circle[radius=0.05];
|
||||
\node[above right] at (0.707, 0.707) {$\ket{\psi}$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
|
||||
\problem{}
|
||||
Find $\psi_0$ and $\psi_1$ in terms of $\theta$ for an arbitrary qubit $\psi$.
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
\problem{}
|
||||
Consider the following qubit states:
|
||||
|
||||
\null\hfill\begin{minipage}{0.48\textwidth}
|
||||
\begin{equation*}
|
||||
\ket{+} = \frac{\ket{0} + \ket{1}}{\sqrt{2}}
|
||||
\end{equation*}
|
||||
\end{minipage}\hfill\begin{minipage}{0.48\textwidth}
|
||||
\begin{equation*}
|
||||
\ket{-} = \frac{\ket{0} - \ket{1}}{\sqrt{2}}
|
||||
\end{equation*}
|
||||
\end{minipage}\hfill\null
|
||||
|
||||
\begin{itemize}
|
||||
\item Where are these on the unit circle?
|
||||
\item What are their polar angles?
|
||||
\item What are the probabilities of observing $\ket{0}$ and $\ket{1}$ when measuring $\ket{+}$ and $\ket{-}$?
|
||||
\end{itemize}
|
||||
|
||||
\vfill
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale = 2.5]
|
||||
\draw[dashed] (0,0) circle(1);
|
||||
\fill[color = black] (0, 0) circle[radius=0.05];
|
||||
|
||||
\draw[->] (0, 0) -- (1.2, 0);
|
||||
\fill[color = oblue] (1, 0) circle[radius=0.05];
|
||||
\node[below right] at (1, 0) {$\ket{0}$};
|
||||
|
||||
\draw[->] (0, 0) -- (0, 1.2);
|
||||
\fill[color = oblue] (0, 1) circle[radius=0.05];
|
||||
\node[above left] at (0, 1) {$\ket{1}$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
\vfill
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
\section{Operations on One Qubit}
|
||||
|
||||
We may apply transformations to qubits just as we apply transformations to probabilistic bits.
|
||||
Again, we'll represent transformations as $2 \times 2$ matrices, since we want to map
|
||||
one qubit state to another. \par
|
||||
\note{In other words, we want to map elements of $\mathbb{R}^2$ to elements of $\mathbb{R}^2$.} \par
|
||||
We will call such maps \textit{quantum gates,} since they are the quantum equivalent of classical logic gates.
|
||||
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
There are two conditions a valid quantum gate $G$ must satisfy:
|
||||
\begin{itemize}[itemsep = 1mm]
|
||||
\item For any valid state $\ket{\psi}$, $G\ket{\psi}$ is a valid state. \par
|
||||
Namely, $G$ must preserve the length of any vector it is applied to. \par
|
||||
Recall that the set of valid quantum states is the set of unit vectors in $\mathbb{R}^2$
|
||||
|
||||
\item Any quantum gate must be \textit{invertible}. \par
|
||||
We'll skip this condition for now, and return to it later.
|
||||
\end{itemize}
|
||||
In short, a quantum gate is a linear map that maps the unit circle to itself. \par
|
||||
There are only two kinds of linear maps that do this: reflections and rotations.
|
||||
|
||||
\problem{}
|
||||
The $X$ gate is the quantum analog of the \texttt{not} gate, defined by the following table:
|
||||
\begin{itemize}
|
||||
\item $X\ket{0} = \ket{1}$
|
||||
\item $X\ket{1} = \ket{0}$
|
||||
\end{itemize}
|
||||
Find the matrix $X$.
|
||||
|
||||
\begin{solution}
|
||||
\begin{equation*}
|
||||
\begin{bmatrix}
|
||||
0 & 1 \\ 1 & 0
|
||||
\end{bmatrix}
|
||||
\end{equation*}
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
What is $X\ket{+}$ and $X\ket{-}$? \par
|
||||
\hint{Remember that all matrices are linear maps. What does this mean?}
|
||||
|
||||
\begin{solution}
|
||||
$X\ket{+} = \ket{+}$ and $X\ket{-} = -\ket{-}$ (that is, negative ket-minus). \par
|
||||
Most notably, remember that $G(a\ket{0} + b\ket{1}) = aG\ket{0} + bG\ket{1}$
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
\problem{}
|
||||
In terms of geometric transformations, what does $X$ do to the unit circle?
|
||||
|
||||
\begin{solution}
|
||||
It is a reflection about the $45^\circ$ axis.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
\problem{}
|
||||
Let $Z$ be a quantum gate defined by the following table: \par
|
||||
\begin{itemize}
|
||||
\item $Z\ket{0} = \ket{0}$,
|
||||
\item $Z\ket{1} = -\ket{1}$.
|
||||
\end{itemize}
|
||||
What is the matrix $Z$? What are $Z\ket{+}$ and $Z\ket{-}$? \par
|
||||
What is $Z$ as a geometric transformation?
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Is the map $B$ defined by the table below a valid quantum gate?
|
||||
\begin{itemize}
|
||||
\item $B\ket{0} = \ket{0}$
|
||||
\item $B\ket{1} = \ket{+}$
|
||||
\end{itemize}
|
||||
\hint{Find a $\ket{\psi}$ so that $B\ket{\psi}$ is not a valid qubit state}
|
||||
|
||||
\begin{solution}
|
||||
$B\ket{+} = \frac{1 + \sqrt{2}}{2}\ket{0} + \frac{1}{2}\ket{1}$, which has a non-unit length of $\frac{\sqrt{2} + 1}{\sqrt{2}}$.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
|
||||
\problem{Rotation}
|
||||
As we noted earlier, any rotation about the center is a valid quantum gate. \par
|
||||
Let's derive all transformations of this form.
|
||||
\begin{itemize}[itemsep = 1mm]
|
||||
\item Let $U_\phi$ be the matrix that represents a counterclockwise rotation of $\phi$ degrees. \par
|
||||
What is $U\ket{0}$ and $U\ket{1}$?
|
||||
|
||||
\item Find the matrix $U_\phi$ for an arbitrary $\phi$.
|
||||
\end{itemize}
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
\problem{}
|
||||
Say we have a qubit that is either $\ket{+}$ or $\ket{-}$. We do not know which of the two states it is in. \par
|
||||
Using one operation and one measurement, how can we find out, for certain, which qubit we received? \par
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
@ -1,283 +0,0 @@
|
||||
\section{Two Bits}
|
||||
|
||||
|
||||
\problem{}<compoundclassicalbits>
|
||||
As we already know, the set of states a single bit can take is $\mathbb{B} = \{\texttt{0}, \texttt{1}\}$. \par
|
||||
What is the set of compound states \textit{two} bits can take? How about $n$ bits? \par
|
||||
\hint{Cartesian product.}
|
||||
|
||||
|
||||
\vspace{5cm}
|
||||
|
||||
|
||||
|
||||
Of course, \ref{compoundclassicalbits} is fairly easy: \par
|
||||
If $a$ is in $\{\texttt{0}, \texttt{1}\}$ and $b$ is in $\{\texttt{0}, \texttt{1}\}$,
|
||||
the values $ab$ can take are
|
||||
$\{\texttt{0}, \texttt{1}\} \times \{\texttt{0}, \texttt{1}\} = \{\texttt{00}, \texttt{01}, \texttt{10}, \texttt{11}\}$.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
The same is true of any other state set: if $a$ takes values in $A$ and $b$ takes values in $B$, \par
|
||||
the compound state $(a,b)$ takes values in $A \times B$.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
We would like to do the same in vector notation. Given bits $\ket{a}$ and $\ket{b}$,
|
||||
how should we represent the state of $\ket{ab}$? We'll spend the rest of this section solving this problem.
|
||||
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
When we have two bits, we have four orthogonal states:
|
||||
$\overrightarrow{00}$, $\overrightarrow{01}$, $\overrightarrow{10}$, and $\overrightarrow{11}$. \par
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
Write $\ket{00}$, $\ket{01}$, $\ket{10}$, and $\ket{11}$ as column vectors \par
|
||||
with respect to the orthonormal basis $\{\overrightarrow{00}, \overrightarrow{01}, \overrightarrow{10}, \overrightarrow{11}\}$.
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\definition{Tensor Products}
|
||||
The \textit{tensor product} of two vectors is defined as follows:
|
||||
\begin{equation*}
|
||||
\begin{bmatrix}
|
||||
x_1 \\ x_2
|
||||
\end{bmatrix}
|
||||
\otimes
|
||||
\begin{bmatrix}
|
||||
y_1 \\ y_2
|
||||
\end{bmatrix}
|
||||
=
|
||||
\begin{bmatrix}
|
||||
x_1
|
||||
\begin{bmatrix}
|
||||
y_1 \\ y_2
|
||||
\end{bmatrix}
|
||||
|
||||
\\[4mm]
|
||||
|
||||
x_2
|
||||
\begin{bmatrix}
|
||||
y_1 \\ y_2
|
||||
\end{bmatrix}
|
||||
\end{bmatrix}
|
||||
=
|
||||
\begin{bmatrix}
|
||||
x_1y_1 \\[1mm]
|
||||
x_1y_2 \\[1mm]
|
||||
x_2y_1 \\[1mm]
|
||||
x_2y_2 \\[0.5mm]
|
||||
\end{bmatrix}
|
||||
\end{equation*}
|
||||
|
||||
|
||||
That is, we take our first vector, multiply the second
|
||||
vector by each of its components, and stack the result.
|
||||
You could think of this as a generalization of scalar
|
||||
mulitiplication, where scalar mulitiplication is a
|
||||
tensor product with a vector in $\mathbb{R}^1$:
|
||||
\begin{equation*}
|
||||
a
|
||||
\begin{bmatrix}
|
||||
x_1 \\ x_2
|
||||
\end{bmatrix}
|
||||
=
|
||||
\begin{bmatrix}
|
||||
a_1
|
||||
\end{bmatrix}
|
||||
\otimes
|
||||
\begin{bmatrix}
|
||||
y_1 \\ y_2
|
||||
\end{bmatrix}
|
||||
=
|
||||
\begin{bmatrix}
|
||||
a_1
|
||||
\begin{bmatrix}
|
||||
y_1 \\ y_2
|
||||
\end{bmatrix}
|
||||
\end{bmatrix}
|
||||
=
|
||||
\begin{bmatrix}
|
||||
a_1y_1 \\[1mm]
|
||||
a_1y_2
|
||||
\end{bmatrix}
|
||||
\end{equation*}
|
||||
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
Also, note that the tensor product is very similar to the
|
||||
Cartesian product: if we take $x$ and $y$ as sets, with
|
||||
$x = \{x_1, x_2\}$ and $y = \{y_1, y_2\}$, the Cartesian product
|
||||
contains the same elements as the tensor product---every possible
|
||||
pairing of an element in $x$ with an element in $y$:
|
||||
\begin{equation*}
|
||||
x \times y = \{~(x_1,y_1), (x_1,y_2), (x_2,y_1), (x_2y_2)~\}
|
||||
\end{equation*}
|
||||
|
||||
|
||||
In fact, these two operations are (in a sense) essentially identical. \par
|
||||
Let's quickly demonstrate this.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
Say $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^m$. \par
|
||||
What is the dimension of $x \otimes y$?
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}<basistp>
|
||||
What is the pairwise tensor product
|
||||
$
|
||||
\Bigl\{
|
||||
\left[
|
||||
\begin{smallmatrix}
|
||||
1 \\ 0 \\ 0
|
||||
\end{smallmatrix}
|
||||
\right],
|
||||
\left[
|
||||
\begin{smallmatrix}
|
||||
0 \\ 1 \\ 0
|
||||
\end{smallmatrix}
|
||||
\right],
|
||||
\left[
|
||||
\begin{smallmatrix}
|
||||
0 \\ 0 \\ 1
|
||||
\end{smallmatrix}
|
||||
\right]
|
||||
\Bigr\}
|
||||
\otimes
|
||||
\Bigl\{
|
||||
\left[
|
||||
\begin{smallmatrix}
|
||||
1 \\ 0
|
||||
\end{smallmatrix}
|
||||
\right],
|
||||
\left[
|
||||
\begin{smallmatrix}
|
||||
0 \\ 1
|
||||
\end{smallmatrix}
|
||||
\right]
|
||||
\Bigr\}
|
||||
$?
|
||||
|
||||
\note{in other words, distribute the tensor product between every pair of vectors.}
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
What is the \textit{span} of the vectors we found in \ref{basistp}? \par
|
||||
In other words, what is the set of vectors that can be written as linear combinations of the vectors above?
|
||||
|
||||
\vfill
|
||||
|
||||
Look through the above problems and convince yourself of the following fact: \par
|
||||
If $a$ is a basis of $A$ and $b$ is a basis of $B$, $a \otimes b$ is a basis of $A \times B$.
|
||||
\pagebreak
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
The compound state of two vector-form bits is their tensor product. \par
|
||||
Compute the following. Is the result what we'd expect?
|
||||
\begin{itemize}
|
||||
\item $\ket{0} \otimes \ket{0}$
|
||||
\item $\ket{0} \otimes \ket{1}$
|
||||
\item $\ket{1} \otimes \ket{0}$
|
||||
\item $\ket{1} \otimes \ket{1}$
|
||||
\end{itemize}
|
||||
\hint{
|
||||
Remember that the coordinates of
|
||||
$\ket{0}$ are $\left[\begin{smallmatrix} 1 \\ 0 \end{smallmatrix}\right]$,
|
||||
and the coordinates of
|
||||
$\ket{1}$ are $\left[\begin{smallmatrix} 0 \\ 1 \end{smallmatrix}\right]$.
|
||||
}
|
||||
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\problem{}<fivequant>
|
||||
Of course, writing $\ket{0} \otimes \ket{1}$ is a bit excessive. We'll shorten this notation to $\ket{01}$. \par
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
In fact, we could go further: if we wanted to write the set of bits $\ket{1} \otimes \ket{1} \otimes \ket{0} \otimes \ket{1}$, \par
|
||||
we could write $\ket{1101}$---but a shorter alternative is $\ket{13}$, since $13$ is \texttt{1101} in binary.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
Write $\ket{5}$ as three-bit state vector. \par
|
||||
|
||||
\begin{solution}
|
||||
$\ket{5} = \ket{101} = \ket{1} \otimes \ket{0} \otimes \ket{1} = [0,0,0,0,0,1,0,0]^T$ \par
|
||||
Notice how we're counting from the top, with $\ket{000} = [1,0,...,0]$ and $\ket{111} = [0, ..., 0, 1]$.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
Write the three-bit states $\ket{0}$ through $\ket{7}$ as column vectors. \par
|
||||
\hint{You do not need to compute every tensor product. Do a few and find the pattern.}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
@ -1,254 +0,0 @@
|
||||
\section{Half a Qubit}
|
||||
|
||||
\begin{tcolorbox}[
|
||||
enhanced,
|
||||
breakable,
|
||||
colback=white,
|
||||
colframe=ored,
|
||||
boxrule=0.6mm,
|
||||
arc=0mm,
|
||||
outer arc=0mm,
|
||||
]
|
||||
\color{ored}
|
||||
\begingroup
|
||||
\large\centering
|
||||
\textbf{Disclaimer:} \par
|
||||
\endgroup
|
||||
\vspace{1ex}
|
||||
The \say{qubits} we're about to define aren't \textit{really} qubits. The proper definition is a bit more
|
||||
complicated, but don't worry about that yet. For now, take what I say as truth---we'll get to
|
||||
the complex definition soon enough.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
The information provided in this handout does not, and is not intended to, constitute legal advice.
|
||||
All information, content, and material in this document is for general informational purposes only.
|
||||
\end{tcolorbox}
|
||||
|
||||
|
||||
\generic{Remark:}
|
||||
Just like a classical bit, a \textit{quantum bit} (or \textit{qubit}) can take the values $\ket{0}$ and $\ket{1}$. \par
|
||||
However, \texttt{0} and \texttt{1} aren't the only states a qubit may have.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
We'll make sense of quantum bits by extending the \say{vectored} bit representation we developed in the previous section.
|
||||
First, let's look at a diagram we drew a few pages ago:
|
||||
|
||||
\begin{ORMCbox}{Time Travel (Page 5)}{black!10!white}{black!65!white}
|
||||
A classical bit takes states in $\{\texttt{0}, \texttt{1}\}$, picking one at a time. \par
|
||||
We'll represent \texttt{0} and \texttt{1} as perpendicular unit vectors $\ket{0}$ and $\ket{1}$,
|
||||
show below.
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=1.5]
|
||||
\fill[color = black] (0, 0) circle[radius=0.05];
|
||||
|
||||
\draw[->] (0, 0) -- (1.2, 0);
|
||||
\node[right] at (1.2, 0) {$\ket{0}$};
|
||||
\fill[color = oblue] (1, 0) circle[radius=0.05];
|
||||
\node[below] at (1, 0) {\texttt{0}};
|
||||
|
||||
\draw[->] (0, 0) -- (0, 1.2);
|
||||
\node[above] at (0, 1.2) {$\ket{1}$};
|
||||
\fill[color = oblue] (0, 1) circle[radius=0.05];
|
||||
\node[left] at (0, 1) {\texttt{1}};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
|
||||
The point marked $1$ is at $[0, 1]$. It is no parts $\ket{0}$, and all parts $\ket{1}$. \par
|
||||
Of course, we can say something similar about the point marked $0$: \par
|
||||
It is at $[1, 0] = (1 \times \ket{0}) + (0 \times \ket{1})$, and is thus all $\ket{0}$ and no $\ket{1}$. \par
|
||||
\end{ORMCbox}
|
||||
|
||||
The diagram in the box above can also be used to describe the state of a qubit. \par
|
||||
Like classical bits, qubits have the \textit{basis states} $\ket{0}$ and $\ket{1}$. \par
|
||||
Unlike classical bits, qubits may take values that are some combination of both.
|
||||
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
Namely, every possible state of a qubit is a \textit{normalized linear combination} of $\ket{0}$ and $\ket{1}$. \par
|
||||
Such states are called \textit{superpositions} of $\ket{0}$ and $\ket{1}$, since they partially contain both states.
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\definition{}
|
||||
The state of a quantum bit is the column unit vector
|
||||
$
|
||||
\ket{\psi}
|
||||
= \left[\begin{smallmatrix} a \\ b \end{smallmatrix}\right]
|
||||
= a\ket{0} + b\ket{1}$ for $a, b \in \mathbb{R}
|
||||
$. \par
|
||||
|
||||
Note that the length of $\ket{\psi}$ must always be $1$, which is the same as saying that $a^2 + b^2 = 1$.
|
||||
|
||||
\vspace{2mm}
|
||||
If we plot the set of valid quantum states on our plane, we get a unit circle centered at the origin: \par
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=1.5]
|
||||
\draw[dashed] (0,0) circle(1);
|
||||
|
||||
\fill[color = black] (0, 0) circle[radius=0.05];
|
||||
|
||||
\draw[->] (0, 0) -- (1.2, 0);
|
||||
\fill[color = oblue] (1, 0) circle[radius=0.05];
|
||||
\node[below right] at (1, 0) {$\ket{0}$};
|
||||
|
||||
\draw[->] (0, 0) -- (0, 1.2);
|
||||
\fill[color = oblue] (0, 1) circle[radius=0.05];
|
||||
\node[above left] at (0, 1) {$\ket{1}$};
|
||||
|
||||
\fill[color = ored] (0.87, 0.5) circle[radius=0.05];
|
||||
\node[above right] at (0.87, 0.5) {$\ket{\psi}$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
\problem{}
|
||||
In the above diagram, the counterclockwise angle from $\ket{0}$ to $\ket{\psi}$ is $30^\circ$\hspace{-1ex}. \par
|
||||
Write $\ket{\psi}$ as a linear combination of $\ket{0}$ and $\ket{1}$.
|
||||
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
\definition{Measurement I}
|
||||
Although a qubit may have many states, it must be $\ket{0}$ or $\ket{1}$ when we measure it. \par
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
As a trivial example, say $\ket{\psi}$ = $\ket{0}$. \par
|
||||
If we were to measure $\ket{\psi}$, we'd get $\ket{0}$, and the state of the qubit wouldn't change.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
However, something interesting happens when $\ket{\psi} = a\ket{0} + b\ket{1}$. \par
|
||||
Our measurement again returns either $\ket{0}$ or $\ket{1}$, with the following probabilities: \par
|
||||
\begin{itemize}[itemsep = 2mm, topsep = 2mm]
|
||||
\item $\mathcal{P}(\ket{1}) = a^2$
|
||||
\item $\mathcal{P}(\ket{0}) = b^2$
|
||||
\end{itemize}
|
||||
\note{
|
||||
Note that $\mathcal{P}(\ket{0}) + \mathcal{P}(\ket{1}) = 1$. \\
|
||||
As you already know, this is true of any probability function.
|
||||
}
|
||||
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
In addition, $\ket{\psi}$ \textit{collapses} when it is measured: it instantly changes its state to the result of the measurement,
|
||||
leaving no trace of its previous state. \par
|
||||
If we measure $\ket{\psi}$ and get $\ket{1}$, $\ket{\psi}$ becomes $\ket{1}$---and
|
||||
it will remain in that state until it is changed.
|
||||
Quantum bits cannot be measured without their state collapsing. \par
|
||||
|
||||
\pagebreak
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
\begin{itemize}
|
||||
\item What is the probability we get $\ket{0}$ when we measure $\ket{\psi_0}$? \par
|
||||
\item What outcomes can we get if we measure it a second time? \par
|
||||
\item What are these probabilities for $\ket{\psi_1}$?
|
||||
\end{itemize}
|
||||
|
||||
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=1.5]
|
||||
\draw[dashed] (0,0) circle(1);
|
||||
|
||||
\fill[color = black] (0, 0) circle[radius=0.05];
|
||||
|
||||
\draw[->] (0, 0) -- (1.2, 0);
|
||||
\fill[color = oblue] (1, 0) circle[radius=0.05];
|
||||
\node[below right] at (1, 0) {$\ket{0}$};
|
||||
|
||||
\draw[->] (0, 0) -- (0, 1.2);
|
||||
\fill[color = oblue] (0, 1) circle[radius=0.05];
|
||||
\node[above left] at (0, 1) {$\ket{1}$};
|
||||
|
||||
\draw[dotted] (0, 0) -- (0.87, 0.5);
|
||||
\draw[color=gray,->] (0.5, 0.0) arc (0:30:0.5);
|
||||
\node[right, color=gray] at (0.47, 0.12) {$30^\circ$};
|
||||
\fill[color = ored] (0.87, 0.5) circle[radius=0.05];
|
||||
\node[above right] at (0.87, 0.5) {$\ket{\psi_0}$};
|
||||
|
||||
|
||||
\draw[dotted] (0, 0) -- (-0.707, -0.707);
|
||||
\draw[color=gray,->] (0.25, 0.0) arc (0:-135:0.25);
|
||||
\node[below, color=gray] at (0.2, -0.2) {$135^\circ$};
|
||||
\fill[color = ored] (-0.707, -0.707) circle[radius=0.05];
|
||||
\node[below left] at (-0.707, -0.707) {$\ket{\psi_1}$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
|
||||
|
||||
\vfill
|
||||
|
||||
As you may have noticed, we don't need two coordinates to fully define a quibit's state. \par
|
||||
We can get by with one coordinate just as well.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
Instead of referring to each state using its cartesian coordinates $a$ and $b$, \par
|
||||
we can address it using its \textit{polar angle} $\theta$, measured from $\ket{0}$ counterclockwise:
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=1.5]
|
||||
\draw[dashed] (0,0) circle(1);
|
||||
\fill[color = black] (0, 0) circle[radius=0.05];
|
||||
|
||||
\draw[dotted] (0, 0) -- (0.707, 0.707);
|
||||
\draw[color=gray,->] (0.5, 0.0) arc (0:45:0.5);
|
||||
\node[above right, color=gray] at (0.5, 0) {$\theta$};
|
||||
|
||||
\draw[->] (0, 0) -- (1.2, 0);
|
||||
\fill[color = oblue] (1, 0) circle[radius=0.05];
|
||||
\node[below right] at (1, 0) {$\ket{0}$};
|
||||
|
||||
\draw[->] (0, 0) -- (0, 1.2);
|
||||
\fill[color = oblue] (0, 1) circle[radius=0.05];
|
||||
\node[above left] at (0, 1) {$\ket{1}$};
|
||||
|
||||
\fill[color = ored] (0.707, 0.707) circle[radius=0.05];
|
||||
\node[above right] at (0.707, 0.707) {$\ket{\psi}$};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
|
||||
\problem{}
|
||||
Find $a$ and $b$ in terms of $\theta$ for an arbitrary qubit.
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
@ -1,4 +1,4 @@
|
||||
\section{Two Halves of a Qubit}
|
||||
\section{Two Qubits}
|
||||
|
||||
|
||||
\definition{}
|
||||
@ -59,7 +59,7 @@ $\ket{\psi} = \frac{1}{\sqrt{2}} \ket{00} + \frac{1}{2} \ket{01} + \frac{\sqrt{3
|
||||
\problem{}
|
||||
Again, consider the two-qubit state
|
||||
$\ket{\psi} = \frac{1}{\sqrt{2}} \ket{00} + \frac{1}{2} \ket{01} + \frac{\sqrt{3}}{4} \ket{10} + \frac{1}{4} \ket{11}$ \par
|
||||
If we measure the first qubit of $\ket{\psi}$ and get $\ket{0}$, what is the resulting state of $\ket{\phi}$? \par
|
||||
If we measure the first qubit of $\ket{\psi}$ and get $\ket{0}$, what is the resulting state of $\ket{\psi}$? \par
|
||||
What would the state be if we'd measured $\ket{1}$ instead?
|
||||
|
||||
\vfill
|
@ -1,8 +1,7 @@
|
||||
\section{Logic Gates}
|
||||
Now that we know how to write vectored bits, let's look at the ways we can change them.
|
||||
|
||||
\definition{Matrices}
|
||||
A few weeks ago, we talked about matrices. Recall that every linear map may be written as a matrix,
|
||||
Throughout this handout, we've been using matrices. Again, recall that every linear map may be written as a matrix,
|
||||
and that every matrix represents a linear map. For example, if $f: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear
|
||||
map, we can write it as follows:
|
||||
\begin{equation*}
|
||||
@ -26,7 +25,7 @@ map, we can write it as follows:
|
||||
|
||||
|
||||
\definition{}
|
||||
Before discussing quantum gates, we need to review to classical logic. \par
|
||||
Before we discussing multi-qubit quantum gates, we need to review to classical logic. \par
|
||||
Of course, a classical logic gate is a linear map from $\mathbb{B}^m$ to $\mathbb{B}^n$
|
||||
|
||||
|
||||
@ -290,7 +289,7 @@ We could draw the above transformation as a combination $X$ and $I$ (identity) g
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
We can even omit the $I$ gate, since we now know that transforms affect the whole state: \par
|
||||
We can even omit the $I$ gate, since we now know that transformations affect the whole state: \par
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=0.8]
|
||||
\node[qubit] (a) at (0, 0) {$\ket{0}$};
|
@ -38,7 +38,7 @@ the following holds: \par
|
||||
G\bigl(a_0 \ket{0} + a_1\ket{1}\bigr) = a_0G\ket{0} + a_1G\ket{1}
|
||||
\end{equation*}
|
||||
|
||||
\problem{}
|
||||
\problem{}<cnot>
|
||||
Consider the \textit{controlled not} (or \textit{cnot}) gate, defined by the following table: \par
|
||||
\begin{itemize}
|
||||
\item $\text{X}_\text{c}\ket{00} = \ket{00}$
|
||||
@ -51,7 +51,7 @@ Find the matrix that applies the cnot gate.
|
||||
|
||||
\begin{solution}
|
||||
\begin{equation*}
|
||||
\text{CNOT} = \left[\begin{smallmatrix}
|
||||
\text{X}_\text{c} = \left[\begin{smallmatrix}
|
||||
1 & 0 & 0 & 0 \\
|
||||
0 & 1 & 0 & 0 \\
|
||||
0 & 0 & 0 & 1 \\
|
||||
@ -127,43 +127,26 @@ If we measure the result of \ref{applycnot}, what are the probabilities of getti
|
||||
|
||||
\vfill
|
||||
|
||||
\generic{Remark:}
|
||||
As we just saw, a quantum gate is fully defined by the place it maps our basis states $\ket{0}$ and $\ket{1}$ \par
|
||||
(or, $\ket{00...0}$ through $\ket{11...1}$ for multi-qubit gates). This directly follows from \ref{qgateislinear}.
|
||||
\problem{}
|
||||
Finally, modify the original cnot gate so that the roles of its bits are reversed: \par
|
||||
$\text{X}_\text{c, flipped} \ket{ab}$ should invert $\ket{a}$ iff $\ket{b}$ is $\ket{1}$.
|
||||
|
||||
|
||||
\begin{solution}
|
||||
\begin{equation*}
|
||||
\text{X}_\text{c, flipped} = \begin{bmatrix}
|
||||
1 & 0 & 0 & 0 \\
|
||||
0 & 0 & 0 & 1 \\
|
||||
0 & 0 & 1 & 0 \\
|
||||
0 & 1 & 0 & 0 \\
|
||||
\end{bmatrix}
|
||||
\end{equation*}
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
%\problem{}
|
||||
%Now, modify the CNOT gate so that it inverts $\ket{a}$ whenever it is applied.
|
||||
%
|
||||
%\begin{solution}
|
||||
% \begin{equation*}
|
||||
% \text{CNOT}_{\text{mod}} = \begin{bmatrix}
|
||||
% 0 & 1 & 0 & 0 \\
|
||||
% 1 & 0 & 0 & 0 \\
|
||||
% 0 & 0 & 1 & 0 \\
|
||||
% 0 & 0 & 0 & 1
|
||||
% \end{bmatrix}
|
||||
% \end{equation*}
|
||||
%\end{solution}
|
||||
|
||||
%\problem{}
|
||||
%Finally, modify the original CNOT gate so that the roles of its bits are reversed: \par
|
||||
%$\text{CNOT}_{\text{flip}} \ket{ab}$ should invert $\ket{a}$ iff $\ket{b}$ is $\ket{1}$.
|
||||
%
|
||||
%
|
||||
%\begin{solution}
|
||||
% \begin{equation*}
|
||||
% \text{CNOT}_{\text{flip}} = \begin{bmatrix}
|
||||
% 1 & 0 & 0 & 0 \\
|
||||
% 0 & 0 & 0 & 1 \\
|
||||
% 0 & 0 & 1 & 0 \\
|
||||
% 0 & 1 & 0 & 0 \\
|
||||
% \end{bmatrix}
|
||||
% \end{equation*}
|
||||
%\end{solution}
|
||||
%
|
||||
%\vfill
|
||||
|
||||
|
||||
|
||||
@ -232,6 +215,12 @@ Using this result, find $H^{-1}$.
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
What geometric transformation does $H$ apply to the unit circle? \par
|
||||
\hint{Rotation or reflection? How much, or about which axis?}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
What are $H\ket{0}$ and $H\ket{1}$? \par
|
||||
Are these states entangled?
|
67
Advanced/Introduction to Quantum/week 1.tex
Executable file
67
Advanced/Introduction to Quantum/week 1.tex
Executable file
@ -0,0 +1,67 @@
|
||||
% Copyright (C) 2023 <Mark (mark@betalupi.com)>
|
||||
%
|
||||
% This program is free software: you can redistribute it and/or modify
|
||||
% it under the terms of the GNU General Public License as published by
|
||||
% the Free Software Foundation, either version 3 of the License, or
|
||||
% (at your option) any later version.
|
||||
%
|
||||
% You may have received a copy of the GNU General Public License
|
||||
% along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
%
|
||||
%
|
||||
%
|
||||
% If you edit this, please give credit!
|
||||
% Quality handouts take time to make.
|
||||
|
||||
% use the [nosolutions] flag to hide solutions,
|
||||
% use the [solutions] flag to show solutions.
|
||||
\documentclass[
|
||||
solutions,
|
||||
singlenumbering
|
||||
]{../../resources/ormc_handout}
|
||||
\usepackage{../../resources/macros}
|
||||
|
||||
\def\ket#1{\left|#1\right\rangle}
|
||||
\def\bra#1{\left\langle#1\right|}
|
||||
|
||||
\usepackage{units}
|
||||
\input{tikzset}
|
||||
|
||||
|
||||
\uptitlel{Advanced 2}
|
||||
\uptitler{Winter 2022}
|
||||
\title{Intro to Quantum Computing I}
|
||||
\subtitle{Prepared by \githref{Mark} on \today{}}
|
||||
|
||||
|
||||
\begin{document}
|
||||
|
||||
\maketitle
|
||||
|
||||
\input{parts/01 bits}
|
||||
\input{parts/02 qubit}
|
||||
\input{parts/03 two qubits}
|
||||
\input{parts/04 logic gates}
|
||||
\input{parts/05 quantum gates}
|
||||
|
||||
\section{Bonus Problems (Putnam)}
|
||||
|
||||
\problem{}
|
||||
Suppose $A$ is a real, square matrix that satisfies $A^3 = A + I$. \par
|
||||
Show that $\text{det}(A)$ is positive.
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Suppose $A, B$ are $2 \times 2$ complex matrices satisfying $AB = BA$, \par
|
||||
and assume $A$ is not of the form $aI$ for some complex $a$. \par
|
||||
Show that $B = xA + yI$ for complex $x$ and $y$.
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Is there an infinite sequence of real numbers $a_1, a_2, ...$ so that \par
|
||||
$a_1^m + a_2^m + ... = m$ for every positive integer $m$?
|
||||
|
||||
\vfill
|
||||
\end{document}
|
@ -17,7 +17,8 @@
|
||||
% use the [solutions] flag to show solutions.
|
||||
\documentclass[
|
||||
solutions,
|
||||
singlenumbering
|
||||
singlenumbering,
|
||||
shortwarning
|
||||
]{../../resources/ormc_handout}
|
||||
\usepackage{../../resources/macros}
|
||||
|
||||
@ -30,7 +31,7 @@
|
||||
|
||||
\uptitlel{Advanced 2}
|
||||
\uptitler{Winter 2022}
|
||||
\title{Intro to Quantum Computing I}
|
||||
\title{Intro to Quantum Computing II}
|
||||
\subtitle{Prepared by \githref{Mark} on \today{}}
|
||||
|
||||
|
||||
@ -38,13 +39,10 @@
|
||||
|
||||
\maketitle
|
||||
|
||||
\input{parts/00 vectors}
|
||||
\input{parts/01 bits}
|
||||
\input{parts/02 two bits}
|
||||
\input{parts/03 half a qubit}
|
||||
\input{parts/04 two halves}
|
||||
\input{parts/05 logic gates}
|
||||
\input{parts/06 quantum gates}
|
||||
\input{parts/04 logic gates}
|
||||
\input{parts/05 quantum gates}
|
||||
\input{parts/06 hxh}
|
||||
|
||||
|
||||
%\section{Superdense Coding}
|
||||
%TODO
|
Loading…
x
Reference in New Issue
Block a user