diff --git a/Misc/Warm-Ups/nontransitive dice.tex b/Misc/Warm-Ups/nontransitive dice.tex new file mode 100755 index 0000000..e48b1ce --- /dev/null +++ b/Misc/Warm-Ups/nontransitive dice.tex @@ -0,0 +1,128 @@ +\documentclass[ + solutions, + hidewarning, + singlenumbering, + nopagenumber +]{../../resources/ormc_handout} + +\usepackage{tikz} +\usetikzlibrary{arrows.meta} +\usetikzlibrary{shapes.geometric} + +% We put nodes in a separate layer, so we can +% slightly overlap with paths for a perfect fit +\pgfdeclarelayer{nodes} +\pgfdeclarelayer{path} +\pgfsetlayers{main,nodes} + +% Layer settings +\tikzset{ + % Layer hack, lets us write + % later = * in scopes. + layer/.style = { + execute at begin scope={\pgfonlayer{#1}}, + execute at end scope={\endpgfonlayer} + }, + % + % Arrowhead tweak + >={Latex[ width=2mm, length=2mm ]}, + % + % Nodes + main/.style = { + draw, + circle, + fill = white, + line width = 0.35mm + } +} + +\title{Warm Up: Odd dice} +\subtitle{Prepared by Mark on \today} + + +\begin{document} + + \maketitle + + \problem{} + + We say a set of dice $\{A, B, C\}$ is \textit{nontransitive} + if, on average, $A$ beats $B$, $B$ beats $C$, and $C$ beats $A$. + In other words, we get a counterintuitive \say{rock - paper - scissors} effect. + + \vspace{2mm} + + Create a set of nontransitive six-sided dice. \par + \hint{All sides should be numbered with positive integers less than 10.} + + \begin{solution} + One possible set can be numbered as follows: + \begin{itemize} + \item Die $A$: $2, 2, 4, 4, 9, 9$ + \item Die $B$: $1, 1, 6, 6, 8, 8$ + \item Die $C$: $3, 3, 5, 5, 7, 7$ + \end{itemize} + + \vspace{4mm} + + Another solution is below: + \begin{itemize} + \item Die $A$: $3, 3, 3, 3, 3, 6$ + \item Die $B$: $2, 2, 2, 5, 5, 5$ + \item Die $C$: $1, 4, 4, 4, 4, 4$ + \end{itemize} + \end{solution} + + \vfill + + \problem{} + Now, consider the set of six-sided dice below: + \begin{itemize} + \item Die $A$: $4, 4, 4, 4, 4, 9$ + \item Die $B$: $3, 3, 3, 3, 8, 8$ + \item Die $C$: $2, 2, 2, 7, 7, 7$ + \item Die $D$: $1, 1, 6, 6, 6, 6$ + \item Die $E$: $0, 5, 5, 5, 5, 5$ + \end{itemize} + On average, which die beats each of the others? Draw a graph. \par + + \begin{solution} + \begin{center} + \begin{tikzpicture}[scale = 0.5] + \begin{scope}[layer = nodes] + \node[main] (a) at (-2, 0.2) {$a$}; + \node[main] (b) at (0, 2) {$b$}; + \node[main] (c) at (2, 0.2) {$c$}; + \node[main] (d) at (1, -2) {$d$}; + \node[main] (e) at (-1, -2) {$e$}; + \end{scope} + + \draw[->] + (a) edge (b) + (b) edge (c) + (c) edge (d) + (d) edge (e) + (e) edge (a) + + (a) edge (c) + (b) edge (d) + (c) edge (e) + (d) edge (a) + (e) edge (b) + ; + \end{tikzpicture} + \end{center} + \end{solution} + + \vfill + + Now, say we roll each die twice. What happens to the graph above? + + \begin{solution} + The direction of each edge is reversed! + \end{solution} + + \vfill + \pagebreak + +\end{document} \ No newline at end of file