Update cetz & ci
This commit is contained in:
@ -1,6 +1,6 @@
|
||||
#import "@local/handout:0.1.0": *
|
||||
#import "../macros.typ": *
|
||||
#import "@preview/cetz:0.3.1"
|
||||
#import "@preview/cetz:0.4.2"
|
||||
|
||||
= Tropical Cubic Polynomials
|
||||
|
||||
@ -131,15 +131,12 @@ Using the last three problems, find formulas for $B$ and $C$ in terms of $a$, $b
|
||||
#problem()
|
||||
What are the roots of the following polynomial?
|
||||
|
||||
#align(
|
||||
center,
|
||||
box(
|
||||
inset: 3mm,
|
||||
$
|
||||
3 x^6 #tp 4 x^5 #tp 2 x^4 #tp x^3 #tp x^2 #tp 4 x #tp 5
|
||||
$,
|
||||
),
|
||||
)
|
||||
#align(center, box(
|
||||
inset: 3mm,
|
||||
$
|
||||
3 x^6 #tp 4 x^5 #tp 2 x^4 #tp x^3 #tp x^2 #tp 4 x #tp 5
|
||||
$,
|
||||
))
|
||||
|
||||
#solution([
|
||||
We have
|
||||
@ -169,9 +166,8 @@ Find a formula for each $C_i$ in terms of $c_0, c_1, ..., c_n$.
|
||||
|
||||
#solution([
|
||||
$
|
||||
A_j
|
||||
&= min_(l<=j<k)( (a_l - a_k) / (k-l) (k-j) + a_k ) \
|
||||
&= min_(l<=j<k)( a_l (k-j) / (k-l) + a_k (j-l) / (k-l) )
|
||||
A_j & = min_(l<=j<k)( (a_l - a_k) / (k-l) (k-j) + a_k ) \
|
||||
& = min_(l<=j<k)( a_l (k-j) / (k-l) + a_k (j-l) / (k-l) )
|
||||
$
|
||||
|
||||
#v(2mm)
|
||||
|
||||
Reference in New Issue
Block a user