Update cetz & ci
This commit is contained in:
@ -1,5 +1,5 @@
|
||||
#import "@local/handout:0.1.0": *
|
||||
#import "@preview/cetz:0.3.1"
|
||||
#import "@preview/cetz:0.4.2"
|
||||
|
||||
|
||||
// Shorthand, we'll be using these a lot.
|
||||
@ -7,35 +7,31 @@
|
||||
#let tm = sym.times.circle
|
||||
|
||||
#let graphgrid(inner_content) = {
|
||||
align(
|
||||
center,
|
||||
box(
|
||||
inset: 3mm,
|
||||
cetz.canvas({
|
||||
import cetz.draw: *
|
||||
let x = 5.25
|
||||
align(center, box(inset: 3mm, cetz.canvas({
|
||||
import cetz.draw: *
|
||||
let x = 5.25
|
||||
|
||||
grid(
|
||||
(0, 0), (x, x), step: 0.75,
|
||||
stroke: luma(100) + 0.3mm
|
||||
)
|
||||
grid(
|
||||
(0, 0),
|
||||
(x, x),
|
||||
step: 0.75,
|
||||
stroke: luma(100) + 0.3mm,
|
||||
)
|
||||
|
||||
if (inner_content != none) {
|
||||
inner_content
|
||||
}
|
||||
if (inner_content != none) {
|
||||
inner_content
|
||||
}
|
||||
|
||||
mark((0, x + 0.5), (0, x + 1), symbol: ">", fill: black, scale: 1)
|
||||
mark((x + 0.5, 0), (x + 1, 0), symbol: ">", fill: black, scale: 1)
|
||||
mark((0, x + 0.5), (0, x + 1), symbol: ">", fill: black, scale: 1)
|
||||
mark((x + 0.5, 0), (x + 1, 0), symbol: ">", fill: black, scale: 1)
|
||||
|
||||
line(
|
||||
(0, x + 0.25),
|
||||
(0, 0),
|
||||
(x + 0.25, 0),
|
||||
stroke: 0.75mm + black,
|
||||
)
|
||||
}),
|
||||
),
|
||||
)
|
||||
line(
|
||||
(0, x + 0.25),
|
||||
(0, 0),
|
||||
(x + 0.25, 0),
|
||||
stroke: 0.75mm + black,
|
||||
)
|
||||
})))
|
||||
}
|
||||
|
||||
/// Adds extra padding to an equation.
|
||||
@ -48,23 +44,16 @@
|
||||
/// Note that there are newlines between the $ and content,
|
||||
/// this gives us display math (which is what we want when using this macro)
|
||||
#let eqnbox(eqn) = {
|
||||
align(
|
||||
center,
|
||||
box(
|
||||
inset: 3mm,
|
||||
eqn,
|
||||
),
|
||||
)
|
||||
align(center, box(
|
||||
inset: 3mm,
|
||||
eqn,
|
||||
))
|
||||
}
|
||||
|
||||
#let dotline(a, b) = {
|
||||
cetz.draw.line(
|
||||
a,
|
||||
b,
|
||||
stroke: (
|
||||
dash: "dashed",
|
||||
thickness: 0.5mm,
|
||||
paint: ored,
|
||||
),
|
||||
)
|
||||
cetz.draw.line(a, b, stroke: (
|
||||
dash: "dashed",
|
||||
thickness: 0.5mm,
|
||||
paint: ored,
|
||||
))
|
||||
}
|
||||
|
@ -1,21 +1,18 @@
|
||||
#import "@local/handout:0.1.0": *
|
||||
#import "../macros.typ": *
|
||||
#import "@preview/cetz:0.3.1"
|
||||
#import "@preview/cetz:0.4.2"
|
||||
|
||||
= Tropical Polynomials
|
||||
|
||||
#definition()
|
||||
A _polynomial_ is an expression formed by adding and multiplying numbers and a variable $x$. \
|
||||
Every polynomial can be written as
|
||||
#align(
|
||||
center,
|
||||
box(
|
||||
inset: 3mm,
|
||||
$
|
||||
c_0 + c_1 x + c_2 x^2 + ... + c_n x^n
|
||||
$,
|
||||
),
|
||||
)
|
||||
#align(center, box(
|
||||
inset: 3mm,
|
||||
$
|
||||
c_0 + c_1 x + c_2 x^2 + ... + c_n x^n
|
||||
$,
|
||||
))
|
||||
for some nonnegative integer $n$ and coefficients $c_0, c_1, ..., c_n$. \
|
||||
The _degree_ of a polynomial is the largest $n$ for which $c_n$ is nonzero.
|
||||
|
||||
@ -43,15 +40,12 @@ In this section, we will analyze tropical polynomials:
|
||||
#definition()
|
||||
A _tropical_ polynomial is a polynomial that uses tropical addition and multiplication. \
|
||||
In other words, it is an expression of the form
|
||||
#align(
|
||||
center,
|
||||
box(
|
||||
inset: 3mm,
|
||||
$
|
||||
c_0 #tp (c_1 #tm x) #tp (c_2 #tm x^2) #tp ... #tp (c_n #tm x^n)
|
||||
$,
|
||||
),
|
||||
)
|
||||
#align(center, box(
|
||||
inset: 3mm,
|
||||
$
|
||||
c_0 #tp (c_1 #tm x) #tp (c_2 #tm x^2) #tp ... #tp (c_n #tm x^n)
|
||||
$,
|
||||
))
|
||||
where all exponents represent repeated tropical multiplication.
|
||||
|
||||
#pagebreak() // MARK: page
|
||||
@ -66,7 +60,7 @@ Draw a graph of the tropical polynomial $f(x) = x^2 #tp 1x #tp 4$. \
|
||||
#if_no_solutions(graphgrid(none))
|
||||
|
||||
#solution([
|
||||
$f(x) = min(2x , 1+x, 4)$, which looks like:
|
||||
$f(x) = min(2x, 1+x, 4)$, which looks like:
|
||||
|
||||
#graphgrid({
|
||||
import cetz.draw: *
|
||||
@ -90,15 +84,12 @@ Draw a graph of the tropical polynomial $f(x) = x^2 #tp 1x #tp 4$. \
|
||||
#problem()
|
||||
Now, factor $f(x) = x^2 #tp 1x #tp 4$ into two polynomials with degree 1. \
|
||||
In other words, find $r$ and $s$ so that
|
||||
#align(
|
||||
center,
|
||||
box(
|
||||
inset: 3mm,
|
||||
$
|
||||
x^2 #tp 1x #tp 4 = (x #tp r)(x #tp s)
|
||||
$,
|
||||
),
|
||||
)
|
||||
#align(center, box(
|
||||
inset: 3mm,
|
||||
$
|
||||
x^2 #tp 1x #tp 4 = (x #tp r)(x #tp s)
|
||||
$,
|
||||
))
|
||||
|
||||
we will call $r$ and $s$ the _roots_ of $f$.
|
||||
|
||||
@ -159,15 +150,19 @@ Find a factorization of $f$ in the form $a(x #tp r)(x#tp s)$.
|
||||
#solution([
|
||||
We (tropically) factor out $-2$ to get
|
||||
|
||||
#eqnbox($
|
||||
f(x) = -2(x^2 #tp 2x #tp 10)
|
||||
$)
|
||||
#eqnbox(
|
||||
$
|
||||
f(x) = -2(x^2 #tp 2x #tp 10)
|
||||
$,
|
||||
)
|
||||
|
||||
|
||||
by the same process as the previous problem, we get
|
||||
#eqnbox($
|
||||
f(x) = -2(x #tp 2)(x #tp 8)
|
||||
$)
|
||||
#eqnbox(
|
||||
$
|
||||
f(x) = -2(x #tp 2)(x #tp 8)
|
||||
$,
|
||||
)
|
||||
])
|
||||
|
||||
#v(1fr)
|
||||
@ -236,11 +231,11 @@ Graph $f(x) = 1x^2 #tp 3x #tp 5$.
|
||||
#problem()
|
||||
Find a factorization of $f$ in the form $a(x #tp r)(x#tp s)$.
|
||||
|
||||
#solution(
|
||||
eqnbox($
|
||||
#solution(eqnbox(
|
||||
$
|
||||
f(x) = 1x^2 #tp 3 x #tp 5 = 1(x #tp 2)^2
|
||||
$),
|
||||
)
|
||||
$,
|
||||
))
|
||||
|
||||
#v(1fr)
|
||||
|
||||
@ -263,23 +258,21 @@ Graph $f(x) = 2x^2 #tp 4x #tp 4$.
|
||||
|
||||
#if_no_solutions(graphgrid(none))
|
||||
|
||||
#solution(
|
||||
graphgrid({
|
||||
import cetz.draw: *
|
||||
let step = 0.75
|
||||
#solution(graphgrid({
|
||||
import cetz.draw: *
|
||||
let step = 0.75
|
||||
|
||||
dotline((0, 2 * step), (3 * step, 8 * step))
|
||||
dotline((0, 4 * step), (5 * step, 8 * step))
|
||||
dotline((0, 4 * step), (8 * step, 4 * step))
|
||||
dotline((0, 2 * step), (3 * step, 8 * step))
|
||||
dotline((0, 4 * step), (5 * step, 8 * step))
|
||||
dotline((0, 4 * step), (8 * step, 4 * step))
|
||||
|
||||
line(
|
||||
(0, 2 * step),
|
||||
(1 * step, 4 * step),
|
||||
(7.5 * step, 4 * step),
|
||||
stroke: 1mm + oblue,
|
||||
)
|
||||
}),
|
||||
)
|
||||
line(
|
||||
(0, 2 * step),
|
||||
(1 * step, 4 * step),
|
||||
(7.5 * step, 4 * step),
|
||||
stroke: 1mm + oblue,
|
||||
)
|
||||
}))
|
||||
|
||||
|
||||
#problem()
|
||||
@ -325,7 +318,7 @@ Find a formula for $B$ in terms of $a$, $b$, and $c$. \
|
||||
|
||||
#solution([
|
||||
If we want to factor $a(x^2 #tp (b-a)x #tp (c-a))$, we need to find $r$ and $s$ so that
|
||||
- $min(r,s) = b-a$, and
|
||||
- $min(r, s) = b-a$, and
|
||||
- $r + s = c - a$
|
||||
|
||||
#v(2mm)
|
||||
@ -341,9 +334,8 @@ Find a formula for $B$ in terms of $a$, $b$, and $c$. \
|
||||
|
||||
*Case 2:* If $b > (a + c #sym.div) 2$, then
|
||||
$
|
||||
accent(f, macron)(x)
|
||||
&= a x^2 #tp ((a+c)/2)x #tp c \
|
||||
&= a(x #tp (c-a)/2)^2
|
||||
accent(f, macron)(x) & = a x^2 #tp ((a+c)/2)x #tp c \
|
||||
& = a(x #tp (c-a)/2)^2
|
||||
$
|
||||
has the same graph as $f$, and thus $B = (a+c) #sym.div 2$
|
||||
|
||||
|
@ -1,6 +1,6 @@
|
||||
#import "@local/handout:0.1.0": *
|
||||
#import "../macros.typ": *
|
||||
#import "@preview/cetz:0.3.1"
|
||||
#import "@preview/cetz:0.4.2"
|
||||
|
||||
= Tropical Cubic Polynomials
|
||||
|
||||
@ -131,15 +131,12 @@ Using the last three problems, find formulas for $B$ and $C$ in terms of $a$, $b
|
||||
#problem()
|
||||
What are the roots of the following polynomial?
|
||||
|
||||
#align(
|
||||
center,
|
||||
box(
|
||||
inset: 3mm,
|
||||
$
|
||||
3 x^6 #tp 4 x^5 #tp 2 x^4 #tp x^3 #tp x^2 #tp 4 x #tp 5
|
||||
$,
|
||||
),
|
||||
)
|
||||
#align(center, box(
|
||||
inset: 3mm,
|
||||
$
|
||||
3 x^6 #tp 4 x^5 #tp 2 x^4 #tp x^3 #tp x^2 #tp 4 x #tp 5
|
||||
$,
|
||||
))
|
||||
|
||||
#solution([
|
||||
We have
|
||||
@ -169,9 +166,8 @@ Find a formula for each $C_i$ in terms of $c_0, c_1, ..., c_n$.
|
||||
|
||||
#solution([
|
||||
$
|
||||
A_j
|
||||
&= min_(l<=j<k)( (a_l - a_k) / (k-l) (k-j) + a_k ) \
|
||||
&= min_(l<=j<k)( a_l (k-j) / (k-l) + a_k (j-l) / (k-l) )
|
||||
A_j & = min_(l<=j<k)( (a_l - a_k) / (k-l) (k-j) + a_k ) \
|
||||
& = min_(l<=j<k)( a_l (k-j) / (k-l) + a_k (j-l) / (k-l) )
|
||||
$
|
||||
|
||||
#v(2mm)
|
||||
|
Reference in New Issue
Block a user