diff --git a/Advanced/DFAs/main.tex b/Advanced/DFAs/main.tex index 4ef0529..036574c 100755 --- a/Advanced/DFAs/main.tex +++ b/Advanced/DFAs/main.tex @@ -1,13 +1,10 @@ % use [nosolutions] flag to hide solutions. % use [solutions] flag to show solutions. \documentclass[ - solutions, - %shortwarning + solutions ]{../../resources/ormc_handout} -\include{tikxset.tex} - -\tikzset{loop above/.style={min distance=5mm,looseness=10}} +\input{tikxset.tex} \begin{document} @@ -19,7 +16,6 @@ \input{parts/0 DFA.tex} - - + %\input{parts/1 regular.tex} \end{document} \ No newline at end of file diff --git a/Advanced/DFAs/parts/0 DFA.tex b/Advanced/DFAs/parts/0 DFA.tex index d1b2512..2799677 100644 --- a/Advanced/DFAs/parts/0 DFA.tex +++ b/Advanced/DFAs/parts/0 DFA.tex @@ -13,9 +13,11 @@ Consider the automaton $A$ shown below: \node[main] (a) at (0, 0) {$a$}; \node[accept] (b) at (2, 0) {$b$}; \node[main] (c) at (5, 0) {$c$}; + \node[start] (s) at (-2, 0) {\texttt{start}}; \end{scope} \draw[->] + (s) edge (a) (a) edge node[label] {$1$} (b) (a) edge[loop above] node[label] {$0$} (a) (b) edge[bend left] node[label] {$0$} (c) @@ -25,12 +27,17 @@ Consider the automaton $A$ shown below: \end{tikzpicture} \end{center} -$A$ always starts in the state $q_1$. This is called the \textit{start state}. \par -It takes strings using letters in the alphabet $\{0, 1\}$ and reads them left to right, moving between states along the edges marked by each letter. +$A$ takes strings of letters in the alphabet $\{0, 1\}$ and reads them left to right, one letter at a time. \par +Starting in the state $a$, the automaton $A$ will move between states along the edge marked by each letter. \par -For example, consider the string \texttt{1011}. Processing this string, $A$ will go through the states $q_1 - q_2 - q_3 - q_2 - q_2$. \par -Note that $q_2$ has a circle in the diagram above. This means that the state $q_2$ is \textit{accepting}, and that all the strings which end up in it are \textit{accepted}. Similarly, states $q_1$ and $q_3$ are \textit{rejecting} and the strings which end up there are \textit{rejected}. +\vspace{2mm} +Note that node $b$ has a \say{double edge} in the diagram above. This means that the state $b$ is \textit{accepting}. Any string that makes $A$ end in state $b$ is \textit{accepted}. Similarly, strings that end in states $a$ or $c$ are \textit{rejected}. \par + +\vspace{2mm} + +For example, consider the string \texttt{1011}. \par +$A$ will go through the states $a - b - c - b - b$ while processing this string. \par \problem{} @@ -47,7 +54,7 @@ Which of the following strings are accepted by $A$? \\ \problem{} -Describe the general form of a string accepted by $A$. +Describe the general form of a string accepted by $A$. \par \hint{Work backwards from the accepting state, and decide what all the strings must look like at the end in order to be accepted.} \begin{solution} @@ -70,9 +77,13 @@ It starts in the state $s$ and has two accepting states $a_1$ and $b_1$. \node[main] (a2) at (-2, -2.5) {$a_2$}; \node[accept] (b1) at (2, -0.5) {$b_1$}; \node[main] (b2) at (2, -2.5) {$b_2$}; + \node[start] (start) at (0, 1) {\texttt{start}}; \end{scope} + \clip (-4, -3.5) rectangle (4, 1); + \draw[->] + (start) edge (s) (s) edge node[label] {\texttt{a}} (a1) (a1) edge[loop left] node[label] {\texttt{a}} (a1) (a1) edge[bend left] node[label] {\texttt{b}} (a2) @@ -87,9 +98,6 @@ It starts in the state $s$ and has two accepting states $a_1$ and $b_1$. \end{tikzpicture} \end{center} - - - \problem{} Which of the following strings are accepted by $B$: \begin{itemize} @@ -107,7 +115,7 @@ Which of the following strings are accepted by $B$: Describe the strings accepted by $B$. \begin{solution} - They are strings that start and end with the same letter. + $B$ accepts strings that start and end with the same letter. \end{solution} \vfill @@ -135,7 +143,7 @@ A \textit{language} over an alphabet $Q$ is a subset of $Q^*$. \\ For example, the language \say{strings of length 2} over $\{\texttt{0}, \texttt{1}\}$ is $\{\texttt{00}, \texttt{01}, \texttt{10}, \texttt{11}\}$ \definition{} -We say a language $L$ is \textit{recognized} by a DFA $A$ if that DFA accepts a string $w$ iff $w \in L$. +We say a language $L$ is \textit{recognized} by a DFA if that DFA accepts a string $w$ if and only if $w \in L$. %\begin{remark} @@ -154,20 +162,23 @@ How many strings of length $n$ are accepted by the automaton $C$? \node[main] (0) at (0, 0) {$0$}; \node[accept] (1) at (3, 0) {$1$}; \node[main] (2) at (5, 0) {$2$}; + \node[start] (s) at (-2, 0) {\texttt{start}}; \end{scope} \draw[->] - (a) edge[loop above] node[label] {\texttt{b}} (a) - (a) edge[bend left] node[label] {\texttt{a}} (b) - (b) edge[bend left] node[label] {\texttt{b}} (a) - (b) edge node[label] {\texttt{a}} (c) - (c) edge[loop above] node[label] {\texttt{a, b}} (c) + (s) edge (0) + (0) edge[loop above] node[label] {\texttt{b}} (0) + (0) edge[bend left] node[label] {\texttt{a}} (1) + (1) edge[bend left] node[label] {\texttt{b}} (0) + (1) edge node[label] {\texttt{a}} (2) + (2) edge[loop above] node[label] {\texttt{a,b}} (2) ; \end{tikzpicture} \end{center} \begin{solution} - If $A_n$ is the number of accepted strings of length $n$, then $A_n = A_{n-1}+A_{n-2}$. Together with initial conditions, we see that $A_n$ is an $n+2$-th Fibonacci number. + If $A_n$ is the number of accepted strings of length $n$, then $A_n = A_{n-1}+A_{n-2}$. \par + Computing initial conditions, we see that $A_n$ is an $n+2$-th Fibonacci number. \end{solution} %\begin{remark} @@ -178,7 +189,7 @@ How many strings of length $n$ are accepted by the automaton $C$? \pagebreak \problem{} -Draw DFAs that recognize the following languages. In all parts, the alphabet is $\{0,1\}$: +Draw DFAs that recognize the following languages. In all parts, the alphabet is $\{0, 1\}$: \begin{itemize} \item $\{w~ | ~w~ \text{begins with a \texttt{1} and ends with a \texttt{0}}\}$ \item $\{w~ | ~w~ \text{contains at least three \texttt{1}s}\}$ @@ -188,82 +199,440 @@ Draw DFAs that recognize the following languages. In all parts, the alphabet is \item $\{w~ | ~w~ \text{doesn't contain the substring \texttt{110}}\}$ \end{itemize} - \begin{solution} - %\part{a} \includegraphics[width=0.3\linewidth]{6a.png} - %\part{b} \includegraphics[width=0.4\linewidth]{6b.png} - %\part{c} \includegraphics[width=0.3\linewidth]{6c.png} + $\{w~ | ~w~ \text{begins with a \texttt{1} and ends with a \texttt{0}}\}$ + + + \begin{center} + \begin{tikzpicture} + \begin{scope}[layer = nodes] + \node[accept] (0) at (0, 2) {$\phantom{0}$}; + \node[main] (1) at (3, 2) {$\phantom{0}$}; + \node[main] (2) at (0, 0) {$\phantom{0}$}; + \node[main] (3) at (3, 0) {$\phantom{0}$}; + \node[start] (s) at (-2, 0) {\texttt{start}}; + \end{scope} + + \clip (-2, -1) rectangle (4.5, 3); + + \draw[->] + (s) edge (2) + (0) edge[loop left] node[label] {\texttt{1}} (0) + (0) edge[bend left] node[label] {\texttt{1}} (1) + (1) edge[loop right] node[label] {\texttt{1}} (1) + (1) edge[bend left] node[label] {\texttt{0}} (0) + (2) edge[out=90, in=270] node[label] {\texttt{1}} (1) + (2) edge node[label] {\texttt{0}} (3) + (3) edge[loop right] node[label] {\texttt{1,0}} (3) + ; + \end{tikzpicture} + \end{center} + + \linehack{} + $\{w~ | ~w~ \text{contains at least three \texttt{1}s}\}$ + + \begin{center} + + + \begin{tikzpicture} + \begin{scope}[layer = nodes] + \node[start] (s) at (-2, 0) {\texttt{start}}; + \node[main] (0) at (0, 0) {$\phantom{0}$}; + \node[main] (1) at (2, 0) {$\phantom{0}$}; + \node[main] (2) at (4, 0) {$\phantom{0}$}; + \node[accept] (3) at (6, 0) {$\phantom{0}$}; + \end{scope} + + \draw[->] + (s) edge (0) + (0) edge[loop above] node[label] {\texttt{0}} (0) + (1) edge[loop above] node[label] {\texttt{0}} (1) + (2) edge[loop above] node[label] {\texttt{0}} (2) + (3) edge[loop above] node[label] {\texttt{0,1}} (3) + (0) edge node[label] {\texttt{1}} (1) + (1) edge node[label] {\texttt{1}} (2) + (2) edge node[label] {\texttt{1}} (3) + ; + \end{tikzpicture} + \end{center} + + \linehack{} + $\{w~ | ~w~ \text{contains the substring \texttt{0101}}\}$ + + \begin{center} + \begin{tikzpicture} + \begin{scope}[layer = nodes] + \node[start] (s) at (-2, 0) {\texttt{start}}; + \node[main] (0) at (0, 0) {$\phantom{0}$}; + \node[main] (1) at (2, 1) {$\phantom{0}$}; + \node[main] (2) at (4, 1) {$\phantom{0}$}; + \node[main] (3) at (0, 3) {$\phantom{0}$}; + \node[accept] (4) at (2, 3) {$\phantom{0}$}; + \end{scope} + + % Tikz includes invisible handles in picture size. + % This crops the image to fix sizing. + \clip (-2, -1.75) rectangle (5, 5.25); + + \draw[->] + (s) edge (0) + (0) edge[loop above] node[label] {\texttt{1}} (0) + (0) edge[bend right] node[label] {\texttt{0}} (1) + (1) edge[loop above] node[label] {\texttt{0}} (1) + (1) edge node[label] {\texttt{1}} (2) + (3) edge[bend right] node[label] {\texttt{0}} (1) + (3) edge node[label] {\texttt{1}} (4) + (4) edge[loop above] node[label] {\texttt{0,1}} (4) + ; + + \draw[->, rounded corners = 10mm] + (2) to (4, 5) to node[label] {\texttt{0}} (0, 5) to (3) + ; + + \draw[->, rounded corners = 10mm] + (2) to (4, -1.5) to node[label] {\texttt{1}} (0, -1.5) to (0) + ; + + \end{tikzpicture} + \end{center} - \medskip Notice that after getting two 0's in a row we don't reset to the initial state. - %\part{d} \includegraphics[width=0.4\linewidth]{6d.png} - %\part{e} \includegraphics[width=0.3\linewidth]{6e.png} - %\part{f} \includegraphics[width=0.4\linewidth]{6f.png} - \medskip + \pagebreak + $\{w~ | ~w~ \text{has length at least three and its third symbol is a \texttt{0}}\}$ + + \begin{center} + \begin{tikzpicture} + \begin{scope}[layer = nodes] + \node[start] (s) at (-2, 0) {\texttt{start}}; + \node[main] (0) at (0, 0) {$\phantom{0}$}; + \node[main] (1) at (2, 0) {$\phantom{0}$}; + \node[main] (2) at (4, 0) {$\phantom{0}$}; + \node[accept] (3) at (6, 1) {$\phantom{0}$}; + \node[accept] (4) at (6, -1) {$\phantom{0}$}; + \end{scope} + + \clip (-2, -2.5) rectangle (7, 2.5); + + \draw[->] + (s) edge (0) + (0) edge node[label] {\texttt{0,1}} (1) + (1) edge node[label] {\texttt{0,1}} (2) + (2) edge node[label] {\texttt{0}} (3) + (2) edge node[label] {\texttt{1}} (4) + (3) edge[loop above] node[label] {\texttt{0,1}} (3) + (4) edge[loop below] node[label] {\texttt{0,1}} (4) + ; + \end{tikzpicture} + \end{center} + + \linehack{} + $\{w~ | ~w~ \text{starts with \texttt{0} and has odd length, or starts with \texttt{1} and has even length}\}$ + + \begin{center} + \begin{tikzpicture} + \begin{scope}[layer = nodes] + \node[start] (s) at (-2, 0) {\texttt{start}}; + \node[main] (0) at (0, 0) {$\phantom{0}$}; + \node[accept] (1) at (2, 1) {$\phantom{0}$}; + \node[main] (2) at (4, 1) {$\phantom{0}$}; + \end{scope} + + \draw[->] + (s) edge (0) + (0) edge node[label] {\texttt{0}} (1) + (1) edge[bend left] node[label] {\texttt{0,1}} (2) + (2) edge[bend left] node[label] {\texttt{0,1}} (1) + ; + + \draw[->, rounded corners = 5mm] + (0) to node[label] {\texttt{1}} (4, 0) to (2) + ; + \end{tikzpicture} + \end{center} + + \linehack{} + $\{w~ | ~w~ \text{doesn't contain the substring \texttt{110}}\}$ + + \begin{center} + + + \begin{tikzpicture} + \begin{scope}[layer = nodes] + \node[start] (s) at (-2, 0){\texttt{start}}; + \node[accept] (0) at (0, 0) {$\phantom{0}$}; + \node[accept] (1) at (2, 0) {$\phantom{0}$}; + \node[accept] (2) at (4, 0) {$\phantom{0}$}; + \node[main] (3) at (6, 0) {$\phantom{0}$}; + \end{scope} + + \draw[->] + (s) edge (0) + (0) edge[loop above] node[label] {\texttt{0}} (0) + (2) edge[loop above] node[label] {\texttt{1}} (2) + (3) edge[loop above] node[label] {\texttt{0,1}} (3) + (0) edge[bend left] node[label] {\texttt{1}} (1) + (1) edge[bend left] node[label] {\texttt{0}} (0) + (1) edge node[label] {\texttt{1}} (2) + (2) edge node[label] {\texttt{0}} (3) + ; + \end{tikzpicture} + \end{center} Notice that after getting three 1's in a row we don't reset to the initial state. \end{solution} -\vfill - -\problem{} -Draw a DFA over an alphabet $\{\texttt{a}, \texttt{b}, \texttt{@}, \texttt{.}\}$ recognizing the language of strings of the form \texttt{user@website.domain}, where \texttt{user}, \texttt{website} and \texttt{domain} are nonempty strings over $\{\texttt{a}, \texttt{b}\}$ and \texttt{domain} has length 2 or 3. - -\begin{solution} -%\includegraphics[width=0.9\linewidth]{Email.png} -\end{solution} - \vfill \pagebreak \problem{} -Draw a state diagram for a DFA over an alphabet of your choice that recognizes exactly $f(n)$ strings of length $n$ if \\ +Draw a DFA over an alphabet $\{\texttt{a}, \texttt{b}, \texttt{@}, \texttt{.}\}$ recognizing the language of strings of the form \texttt{user@website.domain}, where \texttt{user}, \texttt{website} and \texttt{domain} are nonempty strings over $\{\texttt{a}, \texttt{b}\}$ and \texttt{domain} has length 2 or 3. + +\begin{solution} + + \begin{center} + \begin{tikzpicture} + \begin{scope}[layer = nodes] + \node[start] (start) at (-2, 0) {\texttt{start}}; + \node[main] (0) at (0, 0) {$\phantom{0}$}; + \node[main] (1) at (0, 2) {$\phantom{0}$}; + \node[main] (2) at (0, 4) {$\phantom{0}$}; + \node[main] (3) at (0, 6) {$\phantom{0}$}; + \node[main] (4) at (0, 8) {$\phantom{0}$}; + \node[main] (5) at (0, 10) {$\phantom{0}$}; + \node[accept] (6) at (0, 12) {$\phantom{0}$}; + \node[accept] (7) at (0, 14) {$\phantom{0}$}; + + \node[main] (8) at (5, 7) {$\phantom{0}$}; + \end{scope} + + \draw[->] + (start) edge (0) + (0) edge node[label] {\texttt{a,b}} (1) + (1) edge node[label] {\texttt{@}} (2) + (2) edge node[label] {\texttt{a,b}} (3) + (3) edge node[label] {\texttt{.}} (4) + (4) edge node[label] {\texttt{a,b}} (5) + (5) edge node[label] {\texttt{a,b}} (6) + (6) edge node[label] {\texttt{a,b}} (7) + + (1) edge[loop left] node[label] {\texttt{a,b}} (1) + (3) edge[loop left] node[label] {\texttt{a,b}} (3) + + (0) edge[out=0, in=270] node[label] {\texttt{@,.}} (8) + (1) edge[out=0, in=245] node[label] {\texttt{.}} (8) + (2) edge[out=0, in=220] node[label] {\texttt{@,.}} (8) + (3) edge[out=0, in=195] node[label] {\texttt{@}} (8) + (4) edge[out=0, in=170] node[label] {\texttt{@,.}} (8) + (5) edge[out=0, in=145] node[label] {\texttt{@,.}} (8) + (6) edge[out=0, in=120] node[label] {\texttt{@,.}} (8) + (7) edge[out=0, in=95] node[label] {\texttt{a,b,@,.}} (8) + ; + + \draw[->, rounded corners = 5mm] + (8) to +(1.5, 1) to node[label] {\texttt{a,b,@,.}} +(1.5, -1) to (8) + ; + \end{tikzpicture} + \end{center} + +\end{solution} + +\vfill +\pagebreak + +\problem{} +Draw a state diagram for a DFA over an alphabet of your choice that accepts exactly $f(n)$ strings of length $n$ if \\ \begin{itemize} \item $f(n) = n$ \item $f(n) = n+1$ \item $f(n) = 3^n$ \item $f(n) = n^2$ \item $f(n)$ is a Tribonacci number. \par - \textit{Tribonacci numbers} are defined by the sequence $f(0) = 0$, $f(1) = 1$, $f(2) = 1$, + Tribonacci numbers are defined by the sequence $f(0) = 0$, $f(1) = 1$, $f(2) = 1$, and $f(n) = f(n-1)+f(n-2)+f(n-3)$ for $n \ge 3$ \par - \hint{Fibonacci numbers are given by the automaton prohibiting two \texttt{a}s in a row.} + \hint{Fibonacci numbers are given by the automaton prohibiting two \texttt{'a'}s in a row.} \end{itemize} \begin{solution} - \begin{itemize} - \item You would need to have an alphabet with three letters. - \item Consider the language of words over $\{0, 1, 2\}$ having the sum of digits equal to $2$, so they contain two 1's or one 2. %\includegraphics[width=0.5\linewidth]{NSqrd.png} - \item Following the hint gives the automaton %\includegraphics[width=0.5\linewidth]{Trib1.png} - \item For this automaton $f(n)$ gives Tribonacci numbers with a shift: $f(0)=1$, $f(1)=2$, $f(2)=4$, $f(3)=7$. To account for the shift one can move the starting state in, e.g., this fashion: - %\includegraphics[width=0.5\linewidth]{Trib2.png} - \end{itemize} + + \textbf{Part 4:} $f(n) = n^2$ \par + Consider the language of words over $\{0, 1, 2\}$ that have the sum of their digits equal to $2$. \par + Such words must contain two ones or one two: + + \begin{center} + \begin{tikzpicture} + \begin{scope}[layer = nodes] + \node[start] (start) at (-2, 0) {\texttt{start}}; + \node[main] (0) at (0, 0) {$\phantom{0}$}; + \node[accept] (1) at (2, 0) {$\phantom{0}$}; + \node[main] (2) at (0, -2) {$\phantom{0}$}; + \node[main] (3) at (2, -2) {$\phantom{0}$}; + \end{scope} + + \clip (-2, 1.5) rectangle (4, -2.75); + + \draw[->] + (start) edge (0) + + (0) edge[loop above] node[label] {\texttt{0}} (0) + (1) edge[loop above] node[label] {\texttt{0}} (1) + (2) edge[loop left] node[label] {\texttt{0}} (2) + (3) edge[loop right] node[label] {\texttt{0,1,2}} (3) + + (0) edge node[label] {\texttt{2}} (1) + (0) edge node[label] {\texttt{1}} (2) + (1) edge node[label] {\texttt{1,2}} (3) + (2) edge node[label] {\texttt{1}} (1) + (2) edge node[label] {\texttt{2}} (3) + ; + \end{tikzpicture} + \end{center} + + \linehack{} + + + \textbf{Part 5:} Tribonacci numbers \par + Using the hint, we get the following automaton. \par + It rejects all strings with three \texttt{'a'}s in a row. + + \begin{center} + \begin{tikzpicture} + \begin{scope}[layer = nodes] + \node[start] (start) at (-2, 0) {\texttt{start}}; + \node[accept] (0) at (0, 0) {$\phantom{0}$}; + \node[accept] (1) at (0, 2) {$\phantom{0}$}; + \node[accept] (2) at (2, 0) {$\phantom{0}$}; + \node[main] (3) at (4, 0) {$\phantom{0}$}; + \end{scope} + + \draw[->] + (start) edge (0) + (0) edge[loop below] node[label] {\texttt{b}} (0) + (3) edge[loop above] node[label] {\texttt{a,b}} (3) + (0) edge[bend left] node[label] {\texttt{a}} (1) + (1) edge[bend left] node[label] {\texttt{b}} (0) + (1) edge[bend left] node[label] {\texttt{a}} (2) + (2) edge node[label] {\texttt{a}} (3) + (2) edge node[label] {\texttt{b}} (0) + ; + \end{tikzpicture} + \end{center} + + This automaton rejects all strings with three \texttt{'a'}s in a row. If we count accepted strings, we get the Tribonacci numbers with an offest: $f(0) = 1$, $f(1) = 2$, $f(2)=4$, ... \par + + \pagebreak + + We can fix this by adding a node and changing the start state: + + \begin{center} + \begin{tikzpicture} + \begin{scope}[layer = nodes] + \node[start] (start) at (1, -2) {\texttt{start}}; + \node[accept] (0) at (0, 0) {$\phantom{0}$}; + \node[accept] (1) at (0, 2) {$\phantom{0}$}; + \node[accept] (2) at (2, 0) {$\phantom{0}$}; + \node[main] (3) at (4, 0) {$\phantom{0}$}; + \node[main] (4) at (3, -2) {$\phantom{0}$}; + \end{scope} + + \draw[->] + (start) edge (4) + (2) edge node[label] {\texttt{b}} (0) + (4) edge node[label] {\texttt{b}} (2) + (4) edge node[label] {\texttt{a}} (3) + + (0) edge[loop below] node[label] {\texttt{b}} (0) + (3) edge[loop above] node[label] {\texttt{a,b}} (3) + (0) edge[bend left] node[label] {\texttt{a}} (1) + (1) edge[bend left] node[label] {\texttt{b}} (0) + (1) edge[bend left] node[label] {\texttt{a}} (2) + (2) edge node[label] {\texttt{a}} (3) + (2) edge node[label] {\texttt{b}} (0) + ; + \end{tikzpicture} + \end{center} \end{solution} \vfill +\pagebreak % \problem{} % Draw a DFA over an alphabet $\{a, b, c\}$, accepting all the suffixes of the string $abbc$ (including $\varepsilon$) and only them. -% -% \com{TD}{Something suffix automaton} \problem{} Draw a DFA recognizing the language of strings over $\{\texttt{0}, \texttt{1}\}$ in which \texttt{0} is the third digit from the end. \par Prove that any such DFA must have at least 8 states. - \begin{solution} +\begin{solution} \textbf{Part 1:} \par - Index the states by triples of digits \texttt{000}, \texttt{001}, ..., \texttt{111}. All strings which end by 3 digits $d_1d_2d_3$ will end up in the state $d_1d_2d_3$. The starting state will be \texttt{111}. The transitions from $d_1d_2d_3$ by \texttt{0} and \texttt{1} will lead to $d_2d_3\texttt{0}$ and $d_2d_3\texttt{1}$, respectively. Accepting states are states with indices starting with \texttt{0}. + Index the states by three-letter suffixes \texttt{000}, \texttt{001}, ..., \texttt{111}. All strings that end with letters $d_1d_2d_3$ will end up in the state $d_1d_2d_3$. We accept all states that start with a \texttt{0}. \par + Note that we can start at any node if we ignore strings with fewer than three letters. - %\includegraphics[width=0.7\linewidth]{9.png} + \begin{center} + \begin{tikzpicture} + \begin{scope}[layer = nodes] + \node[start] (start) at (-2, 0) {\texttt{start}}; + \node[main] (7) at (0, 0) {\texttt{111}}; + \node[accept] (3) at (0, -2) {\texttt{011}}; + \node[main] (6) at (2, -2) {\texttt{110}}; + \node[main] (4) at (4, -2) {\texttt{100}}; + \node[accept] (1) at (-4, -4) {\texttt{001}}; + \node[main] (5) at (0, -4) {\texttt{101}}; + \node[accept] (2) at (-2, -4) {\texttt{010}}; + \node[accept] (0) at (-2, -6) {\texttt{000}}; + \end{scope} + + \draw[->] + (0) edge[loop left, looseness = 7] node[label] {\texttt{0}} (0) + (7) edge[loop above, looseness = 7] node[label] {\texttt{1}} (7) + + (start) edge (7) + + (0) edge[out=90,in=-90] node[label] {\texttt{1}} (1) + (1) edge node[label] {\texttt{0}} (2) + (1) edge[out=45,in=-135] node[label] {\texttt{1}} (3) + (2) edge[bend left] node[label] {\texttt{1}} (5) + (3) edge node[label] {\texttt{0}} (6) + (3) edge node[label] {\texttt{1}} (7) + (5) edge[bend left] node[label] {\texttt{0}} (2) + (5) edge node[label] {\texttt{1}} (3) + (6) edge[bend left] node[label] {\texttt{0}} (4) + (6) edge[out=-90,in=0] node[label] {\texttt{1}} (5) + (7) edge[out=0,in=90] node[label] {\texttt{0}} (6) + ; + + \draw[->, rounded corners = 10mm] + (4) to (4, 2) to node[label] {\texttt{1}} (-4, 2) to (1) + ; + + \draw[->, rounded corners = 10mm] + (4) to (4, -6) to node[label] {\texttt{0}} (0) + ; + + \draw[->, rounded corners = 5mm] + (2) to (-2, -5) to node[label] {\texttt{0}} (3, -5) to (3, -2) to (4) + ; + \end{tikzpicture} + \end{center} \linehack{} \textbf{Part 2:} \par - Strings \texttt{000}, \texttt{001}, ..., \texttt{111} should lead to pairwise different states since they differ in $i$-th position and after completing them with $i-1$ digit, they will need to be in different states. + Strings \texttt{000}, \texttt{001}, ..., \texttt{111} must lead to pairwise different states. \par + + \vspace{2mm} + + Assume \texttt{101} and \texttt{010} lead to the same state. Append a \texttt{1} to the end of the string. \par + \texttt{101} will become \texttt{011}, and \texttt{010} will become \texttt{101}. These must be different states, since we accept \texttt{011} and reject \texttt{101}. We now have a contradiction: one edge cannot lead to two states! + + \vspace{2mm} + + \texttt{101} and \texttt{010} must thus correspond to distinct states. \par + We can repeat this argument for any other pair of strings. \par + \end{solution} \vfill diff --git a/Advanced/DFAs/tikxset.tex b/Advanced/DFAs/tikxset.tex index aed6432..911338c 100644 --- a/Advanced/DFAs/tikxset.tex +++ b/Advanced/DFAs/tikxset.tex @@ -17,29 +17,63 @@ execute at end scope={\endpgfonlayer} }, % - % Arrowhead tweaks + % Arrowhead tweak >={Latex[ width=2mm, length=2mm ]}, + % + % Labels inside edges label/.style = { - circle, + rectangle, % For automatic red background in solutions fill = \ORMCbgcolor, - draw = none + draw = none, + rounded corners = 0mm }, % % Nodes main/.style = { draw, circle, - fill = white + fill = white, + line width = 0.35mm }, accept/.style = { draw, circle, fill = white, double, + double distance = 0.5mm, + line width = 0.35mm }, - hatch/.style = { - pattern=north west lines, - pattern color=gray + start/.style = { + draw, + rectangle, + fill = white, + line width = 0.35mm + }, + % + % Loop tweaks + loop above/.style = { + min distance = 2mm, + looseness = 8, + out = 45, + in = 135 + }, + loop below/.style = { + min distance = 5mm, + looseness = 10, + out = 315, + in = 225 + }, + loop right/.style = { + min distance = 5mm, + looseness = 10, + out = 45, + in = 315 + }, + loop left/.style = { + min distance = 5mm, + looseness = 10, + out = 135, + in = 215 } } \ No newline at end of file