Advanced handouts
Add missing file Co-authored-by: Mark <mark@betalupi.com> Co-committed-by: Mark <mark@betalupi.com>
This commit is contained in:
33
src/Advanced/Random Walks/main.tex
Executable file
33
src/Advanced/Random Walks/main.tex
Executable file
@ -0,0 +1,33 @@
|
||||
% use [nosolutions] flag to hide solutions.
|
||||
% use [solutions] flag to show solutions.
|
||||
\documentclass[
|
||||
solutions,
|
||||
singlenumbering
|
||||
]{../../../lib/tex/ormc_handout}
|
||||
\usepackage{../../../lib/tex/macros}
|
||||
|
||||
\input{tikxset.tex}
|
||||
|
||||
% For \nicefrac
|
||||
\usepackage{units}
|
||||
\usepackage{circuitikz}
|
||||
|
||||
\uptitlel{Advanced 2}
|
||||
\uptitler{\smallurl{}}
|
||||
\title{Random Walks and Resistance}
|
||||
\subtitle{
|
||||
Prepared by Mark on \today{} \\
|
||||
Based on a handout by Aaron Anderson
|
||||
}
|
||||
|
||||
|
||||
\begin{document}
|
||||
|
||||
\maketitle
|
||||
|
||||
\input{parts/0 random.tex}
|
||||
\input{parts/1 circuits.tex}
|
||||
\input{parts/2 equivalence.tex}
|
||||
\input{parts/3 effective.tex}
|
||||
|
||||
\end{document}
|
6
src/Advanced/Random Walks/meta.toml
Normal file
6
src/Advanced/Random Walks/meta.toml
Normal file
@ -0,0 +1,6 @@
|
||||
[metadata]
|
||||
title = "Random Walks"
|
||||
|
||||
[publish]
|
||||
handout = true
|
||||
solutions = true
|
330
src/Advanced/Random Walks/parts/0 random.tex
Normal file
330
src/Advanced/Random Walks/parts/0 random.tex
Normal file
@ -0,0 +1,330 @@
|
||||
\section{Random Walks}
|
||||
|
||||
Consider the graph below. A particle sits on some node $n$. Every second, this particle moves left or
|
||||
right with equal probability. Once it reaches node $A$ or $B$, it stops. \par
|
||||
We would like to compute the probability of our particle stopping at node $A$. \par
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
In other words, we want a function $P: \text{Nodes} \to [0, 1]$ that maps each node of the graph
|
||||
to the probability that our particle stops at $A$.
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}
|
||||
\begin{scope}[layer = nodes]
|
||||
\node[accept] (a) at (0, 0) {$A$};
|
||||
\node[main] (x) at (2, 0) {$x$};
|
||||
\node[main] (y) at (4, 0) {$y$};
|
||||
\node[reject] (b) at (6, 0) {$B$};
|
||||
\end{scope}
|
||||
|
||||
\draw[-]
|
||||
(a) edge (x)
|
||||
(x) edge (y)
|
||||
(y) edge (b)
|
||||
;
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
|
||||
|
||||
|
||||
\problem{}<firstgraph>
|
||||
What are $P(A)$ and $P(B)$ in the graph above? \par
|
||||
\note{Note that these values hold for all graphs.}
|
||||
|
||||
\begin{solution}
|
||||
$P(A) = 1$ and $P(B) = 0$
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
Find an expression for $P(x)$ in terms of $P(y)$ and $P(A)$. \par
|
||||
Find an expression for $P(y)$ in terms of $P(x)$ and $P(B)$. \par
|
||||
|
||||
\begin{solution}
|
||||
$P(x) = \frac{P(A) + P(y)}{2}$
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
$P(y) = \frac{P(B) + P(x)}{2}$
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
Use the previous problems to find $P(x)$ and $P(y)$.
|
||||
|
||||
\begin{solution}
|
||||
$P(x) = \nicefrac{2}{3}$
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
$P(y) = \nicefrac{1}{3}$
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
|
||||
|
||||
\problem{}<oneunweighted>
|
||||
Say we have a graph $G$ and a particle on node $x$ with neighbors $v_1, v_2, ..., v_n$. \par
|
||||
Assume that our particle is equally likely to travel to each neighbor. \par
|
||||
Find $P(x)$ in terms of $P(v_1), P(v_2), ..., P(v_n)$.
|
||||
|
||||
\begin{solution}
|
||||
We have
|
||||
$$
|
||||
P(x) = \frac{P(v_1) + P(v_2) + ... + P(v_n)}{n}
|
||||
$$
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
\problem{}
|
||||
In general, how do we find $P(n)$ for any node $n$?
|
||||
|
||||
\begin{solution}
|
||||
If we write an equation for each node other than $A$ and $B$, we have a system of $|N| - 2$
|
||||
linear equations in $|N| - 2$ variables.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
We still need to show that this system is nonsingular, but
|
||||
that's outside the scope of this handout. This could
|
||||
be offered as a bonus problem.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
Find $P(n)$ for all nodes in the graph below.
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}
|
||||
\begin{scope}[layer = nodes]
|
||||
\node[accept] (a) at (0, 0) {$A$};
|
||||
\node[main] (x) at (2, 0) {$x$};
|
||||
\node[main] (y) at (0, -2) {$y$};
|
||||
\node[reject] (b) at (2, -2) {$B$};
|
||||
\end{scope}
|
||||
|
||||
\draw[-]
|
||||
(a) edge (x)
|
||||
(x) edge (b)
|
||||
(b) edge (y)
|
||||
(y) edge (a)
|
||||
;
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
\begin{solution}
|
||||
$P(x) = \nicefrac{1}{2}$ for both $x$ and $y$.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
Find $P(n)$ for all nodes in the graph below. \par
|
||||
\note{Note that this is the graph of a cube with $A$ and $B$ on opposing vertices.}
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}
|
||||
\begin{scope}[layer = nodes]
|
||||
\node[main] (q) at (0, 0) {$q$};
|
||||
\node[main] (r) at (2, 0) {$r$};
|
||||
\node[main] (s) at (0, -2) {$s$};
|
||||
\node[reject] (b) at (2, -2) {$B$};
|
||||
|
||||
\node[accept] (a) at (-1, 1) {$A$};
|
||||
\node[main] (z) at (3, 1) {$z$};
|
||||
\node[main] (x) at (-1, -3) {$x$};
|
||||
\node[main] (y) at (3, -3) {$y$};
|
||||
\end{scope}
|
||||
|
||||
\draw[-]
|
||||
(a) edge (z)
|
||||
(z) edge (y)
|
||||
(y) edge (x)
|
||||
(x) edge (a)
|
||||
|
||||
(q) edge (r)
|
||||
(r) edge (b)
|
||||
(b) edge (s)
|
||||
(s) edge (q)
|
||||
|
||||
(a) edge (q)
|
||||
(z) edge (r)
|
||||
(y) edge (b)
|
||||
(x) edge (s)
|
||||
;
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
|
||||
\begin{solution}
|
||||
$P(z,q, \text{ and } x) = \nicefrac{3}{5}$ \par
|
||||
$P(s,r, \text{ and } y) = \nicefrac{2}{5}$
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\definition{}<weightedgraph>
|
||||
Let us now take a look at weighted graphs. The problem remains the same: we want to compute the probability that
|
||||
our particle stops at node $A$, but our graphs will now feature weighted edges. The probability of our particle
|
||||
taking a certain edge is proportional to that edge's weight.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
For example, if our particle is on node $y$ of the graph below, it has a $\frac{3}{8}$ probability of moving
|
||||
to $x$ and a $\frac{1}{8}$ probability of moving to $z$. \par
|
||||
\note{Note that $3 + 3 + 1 + 1 = 8$.}
|
||||
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}
|
||||
\begin{scope}[layer = nodes]
|
||||
\node[reject] (b) at (0, 0) {$B$};
|
||||
\node[main] (x) at (0, 2) {$x$};
|
||||
\node[main] (y) at (2, 0) {$y$};
|
||||
\node[main] (z) at (4, 0) {$z$};
|
||||
\node[accept] (a) at (3, -2) {$A$};
|
||||
\end{scope}
|
||||
|
||||
\draw[-]
|
||||
(a) edge node[label] {$3$} (y)
|
||||
(y) edge node[label] {$1$} (z)
|
||||
|
||||
(b) edge node[label] {$2$} (x)
|
||||
(x) edge[bend left] node[label] {$3$} (y)
|
||||
(a) edge[bend right] node[label] {$2$} (z)
|
||||
(y) edge node[label] {$1$} (b)
|
||||
;
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
Say a particle on node $x$ has neighbors $v_1, v_2, ..., v_n$ with weights $w_1, w_2, ..., w_n$. \par
|
||||
The edge $(x, v_1)$ has weight $w_1$. Find $P(x)$ in terms of $P(v_1), P(v_2), ..., P(v_n)$.
|
||||
|
||||
|
||||
\begin{solution}
|
||||
$$
|
||||
P(x) = \frac{w_1 P(v_1) + w_2 P(v_2) + ... + w_n P(v_n)}{w_1 + w_2 + ... + w_n}
|
||||
$$
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
Consider the following graph. Find $P(x)$, $P(y)$, and $P(z)$.
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}
|
||||
\begin{scope}[layer = nodes]
|
||||
\node[reject] (b) at (3, 2) {$B$};
|
||||
\node[main] (x) at (0, 0) {$x$};
|
||||
\node[main] (y) at (2, 0) {$y$};
|
||||
\node[main] (z) at (1, 2) {$z$};
|
||||
\node[accept] (a) at (-2, 0) {$A$};
|
||||
\end{scope}
|
||||
|
||||
\draw[-]
|
||||
(x) edge node[label] {$1$} (y)
|
||||
(y) edge node[label] {$1$} (z)
|
||||
(x) edge[bend left] node[label] {$2$} (z)
|
||||
(a) edge node[label] {$1$} (x)
|
||||
(z) edge node[label] {$1$} (b)
|
||||
;
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
\begin{solution}
|
||||
$P(x) = \nicefrac{7}{12}$ \par
|
||||
$P(y) = \nicefrac{6}{12}$ \par
|
||||
$P(z) = \nicefrac{5}{12}$
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
Consider the following graph. \par
|
||||
What expressions can you find for $P(w)$, $P(x)$, $P(y)$, and $P(z)$?
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}
|
||||
\begin{scope}[layer = nodes]
|
||||
\node[accept] (a) at (0, 0) {$A$};
|
||||
\node[main] (w) at (2, 1) {$w$};
|
||||
\node[main] (x) at (4, 1) {$x$};
|
||||
\node[main] (y) at (2, -1) {$y$};
|
||||
\node[main] (z) at (4, -1) {$z$};
|
||||
\node[accept] (b) at (6, 0) {$B$};
|
||||
\end{scope}
|
||||
|
||||
\draw[-]
|
||||
(a) edge node[label] {$2$} (w)
|
||||
(a) edge node[label] {$1$} (y)
|
||||
(w) edge node[label] {$2$} (x)
|
||||
(y) edge node[label] {$2$} (z)
|
||||
(x) edge node[label] {$1$} (y)
|
||||
(x) edge node[label] {$1$} (b)
|
||||
(z) edge node[label] {$2$} (b)
|
||||
;
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
Solve this system of equations. \par
|
||||
\hint{Use symmetry. $P(w) = 1 - P(z)$ and $P(x) = 1 - P(y)$. Why?}
|
||||
|
||||
\begin{solution}
|
||||
$P(w) = \nicefrac{3}{4}$ \par
|
||||
$P(x) = \nicefrac{2}{4}$ \par
|
||||
$P(y) = \nicefrac{2}{4}$ \par
|
||||
$P(z) = \nicefrac{1}{4}$
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
162
src/Advanced/Random Walks/parts/1 circuits.tex
Normal file
162
src/Advanced/Random Walks/parts/1 circuits.tex
Normal file
@ -0,0 +1,162 @@
|
||||
\section{Circuits}
|
||||
|
||||
An \textit{electrical circuit} is a graph with a few extra properties,
|
||||
called \textit{current}, \textit{voltage}, and \textit{resistance}. \par
|
||||
In the definitions below, let $X$ be the set of nodes in a circuit.
|
||||
|
||||
|
||||
\begin{itemize}[itemsep=3mm]
|
||||
\item \textbf{Voltage} is a function $V: X \to \mathbb{R}$ that assigns a number to each node of our graph. \par
|
||||
In any circuit, we pick a \say{ground} node, and define the voltage\footnotemark{} there as 0. \par
|
||||
We also select a \say{source} node, and define its voltage as 1. \par
|
||||
|
||||
\vspace{1mm}
|
||||
|
||||
Intuitively, you could say we're connecting the ends of a 1-volt battery to our source and ground nodes.
|
||||
|
||||
\footnotetext{
|
||||
In the real world, voltage is always measured \textit{between two points} on a circuit.
|
||||
Voltage is defined as the \textit{difference} in electrical charge between two points.
|
||||
Hence, voltage is a function of two nodes.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
Note that this is different than current and resistance, which aren't functions
|
||||
of two arbitrary nodes --- rather, they are functions of \textit{edges}
|
||||
(i.e, two adjacent nodes).
|
||||
}
|
||||
|
||||
|
||||
\item \textbf{Current} is a function $I: X^2 \to \mathbb{R}$ that assigns a number to each
|
||||
\textit{oriented edge} in our graph. An \say{oriented edge} is just an ordered pair of nodes $(n_1, n_2)$. \par
|
||||
|
||||
\vspace{1mm}
|
||||
|
||||
Current through an edge $(a, b)$ is a measure of the flow of charge from $a$ to $b$. \par
|
||||
Naturally, $I(a, b) = -I(b, a)$.
|
||||
|
||||
|
||||
\item \textbf{Resistance} is a function $R: X^2 \to \mathbb{R}^+_0$ that represents a certain edge's
|
||||
resistance to the flow of current through it. \par
|
||||
Resistance is a property of each \textit{link} between nodes, so order doesn't matter: $R(a, b) = R(b, a)$.
|
||||
\end{itemize}
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
It is often convenient to compare electrical circuits to systems of pipes. Say we have a pipe from point $A$ to point $B$.
|
||||
The size of this pipe represents resistance (smaller pipe $\implies$ more resistance), the pressure between $A$ and $B$
|
||||
is voltage, and the speed water flows through it is to current.
|
||||
|
||||
|
||||
\definition{Ohm's law}
|
||||
With this \say{pipe} analogy in mind, you may expect that voltage, current, and resistance are related:
|
||||
if we make our pipe bigger (and change no other parameters), we'd expect to see more current. This is indeed
|
||||
the case! Any circuit obeys \textit{Ohm's law}, stated below:
|
||||
$$
|
||||
V(a, b) = I(a,b) \times R(a,b)
|
||||
$$
|
||||
|
||||
This handout uses two notations for voltage: two-variable $V(a, b)$ and one-variable $V(a)$. \par
|
||||
The first represents the voltage between points $a$ and $b$, better reflecting reality (see the footnote below).
|
||||
The second measures the voltage between $a$ and ground, and is more convenient to use in equations.
|
||||
\textbf{Try to use the single-variable notation in your equations.}
|
||||
Convince yourself that $V(a, b) = V(a) - V(b)$.
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
\definition{Kirchoff's law}
|
||||
The second axiom of electrical circuits is also fairly simple. \textit{Kirchoff's law} states that the sum of all currents connected to
|
||||
a given edge is zero. You can think of this as \say{conservation of mass}: nodes in our circuit do not create or
|
||||
destroy electrons, they simply pass them around to other nodes.\par
|
||||
Formally, we can state this as follows:
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
Let $x$ be a node in our circuit and $N_x$ the set of its neighbors. We than have
|
||||
$$
|
||||
\sum_{b \in N_x} I(x, b) = 0
|
||||
$$
|
||||
which must hold at every node \textbf{except the source and ground vertices.} \par
|
||||
\hint{Keep this exception in mind, it is used in a few problems later on.}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
|
||||
\begin{instructornote}
|
||||
Be aware that some students may not be comfortable with these concepts from physics,
|
||||
nor with the circuit notation on the next page.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
It may be a good idea to give the class a quick lecture on this topic,
|
||||
explaining the basics of electronic circuits and circuit diagrams.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
Things to cover:
|
||||
\begin{itemize}
|
||||
\item All the definitions on the previous page, in detail.
|
||||
\item What's an Ohm, an Amp, a Volt?
|
||||
\item Measuring voltage. Why is $V(a, b) = V(a) - V(b)$?
|
||||
\item What does the $\Omega$ in the picture below mean?
|
||||
\item Circuit symbols in the diagram below.
|
||||
\end{itemize}
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
You could also draw connections to the graph flow handout,
|
||||
if the class covered it before.
|
||||
\end{instructornote}
|
||||
|
||||
|
||||
Consider the circuit below. \textbf{This the graph from \ref{firstgraph}}, turned into a circuit by:
|
||||
\begin{itemize}
|
||||
\item Replacing all edges with $1\Omega$ resistors
|
||||
\item Attaching a 1 volt battery between $A$ and $B$
|
||||
\end{itemize}
|
||||
\vspace{2mm}
|
||||
Note that the battery between $A$ and $B$ isn't really an edge.
|
||||
It exists only to create a potential difference between the two nodes.
|
||||
|
||||
\begin{center}
|
||||
\begin{circuitikz}[american voltages]
|
||||
\draw
|
||||
(0,0) node[above left] {$A$ (source)}
|
||||
to[R, l=$1\Omega$, *-*] (2,0) node[above] {$x$}
|
||||
to[R, l=$1\Omega$, *-*] (4,0) node[above] {$y$}
|
||||
to[R, l=$1\Omega$, *-*] (6,0) node[above right] {$B$ (ground)}
|
||||
to[short] (6, -1) node[below] {$-$}
|
||||
to[battery,invert,l={1 Volt}] (0, -1) node[below] {$+$}
|
||||
to[short] (0, 0)
|
||||
;
|
||||
\end{circuitikz}
|
||||
\end{center}
|
||||
|
||||
\problem{}<onecurrents>
|
||||
From the circuit diagram above, we immediately know that $V(A) = 1$ and $V(B) = 0$. \par
|
||||
What equations related to the currents out of $x$ and $y$ does Kirchoff's law give us? \par
|
||||
\hint{Current into $x$ = current out of $x$}
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
Use Ohm's law to turn the equations from \ref{onecurrents} into equations about voltage and resistance. \par
|
||||
Find an expression for $V(x)$ and $V(y)$ in terms of other voltages, then solve the resulting system of equations.
|
||||
Does your result look familiar?
|
||||
|
||||
\begin{solution}
|
||||
\setlength{\abovedisplayskip}{0pt} % Fix spacing on top
|
||||
\begin{flalign*}
|
||||
V(x) &= \frac{V(A) - V(y)}{2} &&\\
|
||||
V(y) &= \frac{V(x) - V(B)}{2} &&
|
||||
\end{flalign*}
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
122
src/Advanced/Random Walks/parts/2 equivalence.tex
Normal file
122
src/Advanced/Random Walks/parts/2 equivalence.tex
Normal file
@ -0,0 +1,122 @@
|
||||
\section{The Equivalence}
|
||||
In the last problem, we found that the equations for $V(x)$ were the same as the equations for $P(x)$ on the same graph.
|
||||
It turns out that this is true in general: problems about voltage in circuits directly correspond to problems about probability
|
||||
in graphs. We'll spend the next section proving this fact.
|
||||
|
||||
\definition{}
|
||||
For the following problems, \textit{conductance} will be more convenient than resistance. \par
|
||||
The definition of conductance is quite simple:
|
||||
$$
|
||||
C(a, b) = \frac{1}{R(a,b)}
|
||||
$$
|
||||
\note[Aside]{
|
||||
Resistance is usually measured in Ohms, denoted $\Omega$. \\
|
||||
A few good-natured physicists came up with the \say{mho} (denoted \reflectbox{\rotatebox[origin=c]{180}{$\Omega$}})
|
||||
as a unit of conductance, which is equivalent to an inverse Ohm.
|
||||
Unfortunately, NIST discourages the use of Mhos in favor of the equivalent (and less amusing) \say{Siemens.}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
Let $x$ be a node in a graph. \par
|
||||
Let $N_x$ be the set of $x$'s neighbors, $w(x, y)$ the weight of the edge between nodes $x$ and $y$, and $W_x$
|
||||
the sum of the weights of all edges connected to $x$.
|
||||
|
||||
We saw earlier that the probability function $P$ satisfies the following sum:
|
||||
$$
|
||||
P(x) = \sum_{b \in N_x} \biggl( P(b) \times \frac{w(x, b)}{W_x} \biggr)
|
||||
$$
|
||||
|
||||
\note{This was never explicitly stated, but is noted in \ref{weightedgraph}.}
|
||||
|
||||
\vspace{4mm}
|
||||
|
||||
Use Ohm's and Kirchoff's laws to show that the voltage function $V$ satisfies a similar sum:
|
||||
$$
|
||||
V(x) = \sum_{b \in N_x} \biggl( V(b) \times \frac{C(x, b)}{C_x} \biggr)
|
||||
$$
|
||||
where $C(x, b)$ is the conductance of edge $(x, b)$ and $C_x$ is the sum of the conductances of all edges connected to $x$.
|
||||
|
||||
|
||||
\begin{solution}
|
||||
First, we know that
|
||||
$$
|
||||
\sum_{b \in N_x} I(x, b) = 0
|
||||
$$
|
||||
for all nodes $x$. Now, substitute $I(x, b) = \frac{V(x) - V(b)}{R(x, y)}$ and pull out $V(x)$ terms to get
|
||||
$$
|
||||
V(x) \sum_{b \in N_x} \frac{1}{R(x, b)} - \sum_{b \in N_x} \frac{V(b)}{R(x, b)} = 0
|
||||
$$
|
||||
|
||||
Rearranging and replacing $R(x, b)^{-1}$ with $C(x, b)$ and $\sum C(x, b)$ with $C_x$ gives us
|
||||
$$
|
||||
V(x) = \sum_{b \in N_x} V(b) \frac{C(x, b)}{C_x}
|
||||
$$
|
||||
\end{solution}
|
||||
|
||||
|
||||
\vfill
|
||||
|
||||
\pagebreak
|
||||
|
||||
Thus, if $w(a, b) = C(a, b)$, $P$ and $V$ satisfy the same system of linear equations. To finish proving that
|
||||
$P = V$, we now need to show that there can only be one solution to this system. We will do this in the next
|
||||
two problems.
|
||||
|
||||
|
||||
|
||||
\problem{}<generaleq>
|
||||
Let $q$ be a solution to the following equations, where $x \neq a, b$.
|
||||
$$
|
||||
q(x) = \sum_{b \in N_x} \biggl( q(b) \times \frac{w(x, b)}{W_x} \biggr)
|
||||
$$
|
||||
Show that the maximum and minimum of $q$ are $q(a)$ and $q(b)$ (not necessarily in this order).
|
||||
|
||||
\begin{solution}
|
||||
The domain of $q$ is finite, so a maximum and minimum must exist.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
Since $q(x)$ is a weighted average of all $q(b), ~b \in N_x$, there exist $y, z \in N_x$ satisfying
|
||||
$q(y) \leq q(x) \leq q(z)$. Therefore, none of these can be an extreme point.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
$A$ and $B$ are the only vertices for which this may not be true, so they must be the minimum and maximum.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
Let $p$ and $q$ be functions that solve our linear system \par
|
||||
and satisfy $p(A) = q(A) = 1$ and $p(B) = q(B) = 0$. \par
|
||||
|
||||
\vspace{1mm}
|
||||
|
||||
Show that the function $p - q$ satisfies the equations in \ref{generaleq}, \par
|
||||
and that $p(x) - q(x) = 0$ for every $x$. \note{Note that $p(x) - q(x) = 0 ~ \forall x \implies p = q$}
|
||||
|
||||
\begin{solution}
|
||||
The equations in \ref{generaleq} for $p$ and $q$ directly imply that
|
||||
$$
|
||||
[p - q](x) = \sum_{b \in N_x} \biggl( [p - q](b) \times \frac{w(x, b)}{W_x} \biggr)
|
||||
$$
|
||||
Which are the equations from \ref{generaleq} for $(p - q)$.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
Hence, the minimum and maximum values of $p - q$ are $[p - q](a) = 1 - 1 = 0$
|
||||
and $[p - q](b) = 1 - 1 = 0$.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
Therefore $p(x) - q(x) = 0$ for all $x$, so $p(x) = q(x)$.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
282
src/Advanced/Random Walks/parts/3 effective.tex
Normal file
282
src/Advanced/Random Walks/parts/3 effective.tex
Normal file
@ -0,0 +1,282 @@
|
||||
\section{Effective Resistance}
|
||||
|
||||
As we have seen, calculating the properties of a circuit by creating an equation for each vertex is
|
||||
a fairly time-consuming ordeal. Fortunately, there is a better strategy we can use.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
Consider a graph (or a circuit) with source and ground vertices. All parts of the circuit that aren't these
|
||||
two vertices are hidden inside a box, as shown below:
|
||||
|
||||
|
||||
\begin{center}
|
||||
\begin{circuitikz}[american voltages]
|
||||
\draw
|
||||
(0,0) node[above left] {$A$ (source)}
|
||||
to[short, *-] (1,0)
|
||||
(5, 0) to[short, -*] (6,0) node[above right] {$B$ (ground)}
|
||||
to[short] (6, -2) node[below] {$-$}
|
||||
to[battery,invert,l={1 Volt}] (0, -2) node[below] {$+$}
|
||||
to[short] (0, 0)
|
||||
;
|
||||
|
||||
\node[
|
||||
draw,
|
||||
minimum width = 4cm,
|
||||
minimum height = 2cm,
|
||||
anchor = south west
|
||||
] at (1, -1) {Unknown circuit};
|
||||
|
||||
\end{circuitikz}
|
||||
\end{center}
|
||||
|
||||
|
||||
What do we know about this box? If this was a physical system, we'd expect that the current flowing
|
||||
out of $A$ is equal to the current flowing into $B$.
|
||||
|
||||
|
||||
\problem{}
|
||||
Using Kirchoff's law, show that the following equality holds. \par
|
||||
Remember that we assumed Kirchoff's law holds only at nodes other than $A$ and $B$. \par
|
||||
\note[Note]{As before, $N_x$ is the set of neighbors of $x$.}
|
||||
$$
|
||||
\sum_{b \in N_A} I(A, b) = \sum_{b \in N_B} I(b, B)
|
||||
$$
|
||||
|
||||
\begin{solution}
|
||||
Add Kirchoff's law for all vertices $x \neq A$ to get
|
||||
$$
|
||||
\sum_{\forall x} \biggl( ~ \sum_{b \in N_x } I(x, b) \biggr) = 0
|
||||
$$
|
||||
This sum counts both $I(x, y)$ and $I(x, y)$ for all edges $x, y$, except $I(x, y)$ when $x$ is
|
||||
$A$ or $B$. Since $I(a, b) + I(b, a) = 0$, these cancel out, leaving us with
|
||||
$$
|
||||
\sum_{b \in N_A} I(A, b) + \sum_{b \in N_B} I(B, b) = 0
|
||||
$$
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
Rearrange and use the fact that $I(a, b) = -I(b, a)$ to get the final equation.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
If we call this current $I_A = \sum_{b \in N_A} I(A, b)$, we can pretend that the box contains only one resistor,
|
||||
carrying $I_A$ units of current. Using this information and Ohm's law, we can calculate the
|
||||
\textit{effective resistance} of the box.
|
||||
|
||||
\pagebreak
|
||||
|
||||
|
||||
\problem{Resistors in parallel}<parallelresistors>
|
||||
Using Ohm's law and Kirchoff's law, calculate the effective resistance $R_\text{eff}$ of the circuit below.
|
||||
|
||||
\begin{center}
|
||||
\begin{circuitikz}[american voltages]
|
||||
\draw
|
||||
(0,0) node[above left] {$A$ (source)}
|
||||
to[short, *-*] (1, 0)
|
||||
|
||||
(1, 0) to[short] (2, 1)
|
||||
to[R, l=$R_1$, o-o] (4, 1)
|
||||
to[short] (5, 0)
|
||||
|
||||
(1, 0) to[short] (2, -1)
|
||||
to[R, l=$R_n$, o-o] (4, -1)
|
||||
to[short] (5, 0)
|
||||
|
||||
(1, 0) to[short, -o] (2, 0.5)
|
||||
(2, 0.5) to (2.3, 0.5)
|
||||
(4, 0.5) to (3.7, 0.5)
|
||||
(4, 0.5) to[short, o-] (5, 0)
|
||||
|
||||
(1, 0) to[short, -o] (2, -0.5)
|
||||
(2, -0.5) to (2.3, -0.5)
|
||||
(4, -0.5) to (3.7, -0.5)
|
||||
(4, -0.5) to[short, o-] (5, 0)
|
||||
|
||||
(1, 0) to[short] (1.7, 0)
|
||||
(4.3, 0) to[short] (5, 0)
|
||||
|
||||
(5, 0) to[short, *-*] (6, 0) node[above right] {$B$ (ground)}
|
||||
to[short] (6, -2) node[below] {$-$}
|
||||
to[battery,invert,l={1 Volt}] (0, -2) node[below] {$+$}
|
||||
to[short] (0, 0)
|
||||
;
|
||||
|
||||
\node at (3, 0) {$...$ a few more $...$};
|
||||
\end{circuitikz}
|
||||
\end{center}
|
||||
|
||||
\begin{solution}
|
||||
Let $I_i$ be the current across resistor $R_i$, from left to right. \par
|
||||
By Ohm's law, $I_i = \frac{V}{R_i}$ (Note that $V = 1$ in this problem). \par
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
The source current is then $I_A = \sum_{i=1}^n = \Bigl( V \Bigr) \Bigl( \frac{1}{R_1} + \frac{1}{R_2} + ... + \frac{1}{R_n} \Bigr)$.
|
||||
Applying Ohm's law again, we find that
|
||||
$$
|
||||
R_\text{eff} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + ... + \frac{1}{R_n}}
|
||||
$$
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
\problem{Resistors in series}
|
||||
Using Ohm's law and Kirchoff's law, calculate the effective resistance $R_{\text{total}}$ of the circuit below.
|
||||
|
||||
\begin{center}
|
||||
\begin{circuitikz}[american voltages]
|
||||
\draw
|
||||
(0,0) node[above left] {$A$ (source)}
|
||||
to[R, l=$R_1$, *-*] (2,0)
|
||||
to[short] (2.5, 0)
|
||||
|
||||
|
||||
(5.5, 0) to[short] (6, 0)
|
||||
to[R, l=$R_n$, *-*] (8,0) node[above right] {$B$ (ground)}
|
||||
to[short] (8, -1) node[below] {$-$}
|
||||
to[battery,invert,l={1 Volt}] (0, -1) node[below] {$+$}
|
||||
to[short] (0, 0)
|
||||
;
|
||||
|
||||
\node at (4, 0) {$...$ a few more $...$};
|
||||
\end{circuitikz}
|
||||
\end{center}
|
||||
|
||||
\begin{solution}
|
||||
This solution uses the same notation as the solution for \ref{parallelresistors}.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
By Kirchoff's law, all $I_i$ are equal in this circuit. Let's say $I = I_i$. \par
|
||||
Let $V_i$ denote the voltage at the node to the left of $R_i$. \par
|
||||
By Ohm's law, $V_i - V_{i+1} = IR_i$.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
The sum of this over all $i$ telescopes, and we get $V(A) - V(B) = I(R_1 + R_2 + ... + R_n)$. \par
|
||||
Dividing, we find that
|
||||
$$
|
||||
R_\text{eff} = R_1 + R_2 + ... + R_n
|
||||
$$
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
We can now use effective resistance to simplify complicated circuits. Whenever we see the above constructions
|
||||
(resistors in parallel or in series) in a graph, we can replace them with a single resistor of appropriate value.
|
||||
|
||||
|
||||
\problem{}
|
||||
Consider the following circuits. Show that the triangle has the same effective resistance as the star if
|
||||
\begin{itemize}
|
||||
\item $x = R_1R_2 + R_1R_3 + R_2R_3$
|
||||
\item $S_1 = \nicefrac{x}R_3$
|
||||
\item $S_2 = \nicefrac{x}R_1$
|
||||
\item $S_3 = \nicefrac{x}R_2$
|
||||
\end{itemize}
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
\hfill
|
||||
\begin{minipage}{0.48\textwidth}
|
||||
\begin{center}
|
||||
\textbf{The star:}\par
|
||||
\begin{circuitikz}[american voltages]
|
||||
\draw
|
||||
(-1, 1.732) to[R, l=$R_1$, *-*] (0, 0)
|
||||
(2, 0) to[R, l=$R_2$, *-*] (0, 0)
|
||||
(-1, -1.732) to[R, l=$R_3$, *-*] (0, 0)
|
||||
|
||||
(-1, 1.732) to[short, *-o] (-1.5, 1.732)
|
||||
(-1, -1.732) to[short, *-o] (-1.5, -1.732)
|
||||
(2, 0) to[short, *-o] (2.5, 0)
|
||||
;
|
||||
|
||||
\node[above] at (-1, 1.732) {a};
|
||||
\node[above] at (2, 0) {b};
|
||||
\node[below] at (-1, -1.732) {c};
|
||||
\end{circuitikz}
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\hfill
|
||||
\begin{minipage}{0.48\textwidth}
|
||||
\begin{center}
|
||||
\textbf{The triangle:}\par
|
||||
\begin{circuitikz}[american voltages]
|
||||
\draw
|
||||
(-1, 1.732)
|
||||
to[R, l=$S_1$, *-*] (2, 0)
|
||||
to[R, l=$S_2$, *-*] (-1, -1.732)
|
||||
to[R, l=$S_3$, *-*] (-1, 1.732)
|
||||
|
||||
(-1, 1.732) to[short, *-o] (-1.5, 1.732)
|
||||
(-1, -1.732) to[short, *-o] (-1.5, -1.732)
|
||||
(2, 0) to[short, *-o] (2.5, 0)
|
||||
;
|
||||
|
||||
\node[above] at (-1, 1.732) {a};
|
||||
\node[above] at (2, 0) {b};
|
||||
\node[below] at (-1, -1.732) {c};
|
||||
\end{circuitikz}
|
||||
\end{center}
|
||||
\end{minipage}
|
||||
\hfill
|
||||
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\problem{}
|
||||
Suppose we construct a circuit by connecting the $2^n$ vertices of an $n$-dimensional cube with $1\Omega$ resistors.
|
||||
If we place $A$ and $B$ at opposing vertices, what is the effective resistance of this circuit? \par
|
||||
\textbf{Bonus:} As $n \rightarrow \infty$, what happens to $R_\text{eff}$? \par
|
||||
\note[Note]{Leave your answer as a sum.}
|
||||
|
||||
\begin{solution}
|
||||
Think of the vertices of the $n$-dimensional cube as $n$-bit binary strings, with $A$ at \texttt{000...0}
|
||||
and $B$ at \texttt{111...1}. We can divide our cube into $n+1$ layers based on how many ones are in each
|
||||
node's binary string, with the $k^\text{th}$ layer having $k$ ones. By symmetry, all the nodes in each layer
|
||||
have the same voltage. This means we can think of the layers as connected in series, with the resistors
|
||||
inside each layer connected in parallel.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
There are $\binom{n}{k}$ nodes in the $k^\text{th}$ layer. Each node in this layer has $k$ ones, so
|
||||
there are $n - k$ ways to flip a zero to get to the $(k + 1)^\text{th}$ layer. In total, there are
|
||||
$\binom{n}{k}(n - k)$ parallel connections from the $k^\text{th}$ layer to the $(k + 1)^\text{th}$
|
||||
layer, creating an effective resistance of
|
||||
$$
|
||||
\frac{1}{\binom{n}{k}(n - k)}
|
||||
$$
|
||||
|
||||
The total effective resistance is therefore
|
||||
$$
|
||||
\sum_{k = 0}^{n-1} \frac{1}{\binom{n}{k}(n - k)}
|
||||
$$
|
||||
|
||||
\linehack{}
|
||||
|
||||
To calculate the limit as $n \rightarrow \infty$, note that
|
||||
$$
|
||||
\binom{n}{k}(n - k) = \frac{n!}{(n - k - 1)! \times k!} = n \binom{n-1}{k}
|
||||
$$
|
||||
So, the sum is
|
||||
$$
|
||||
\frac{1}{n} \sum_{k=0}^{n-1} \frac{1}{\binom{n - 1}{k}}
|
||||
$$
|
||||
|
||||
\vspace{8mm}
|
||||
|
||||
Note that for $n \geq 4$, $\binom{n}{k} \geq \binom{n}{2}$ for $2 \leq k \leq n-2$, so
|
||||
$$
|
||||
\sum_{k = 0}^{n} \frac{1}{\binom{n}{k}} \leq 2 + \frac{2}{n} + \frac{n - 3}{\binom{n}{2}}
|
||||
$$
|
||||
which approaches $2$ as $n \rightarrow \infty$.
|
||||
So, $R_\text{eff} \rightarrow 0$ as $n \rightarrow \infty$.
|
||||
\end{solution}
|
88
src/Advanced/Random Walks/tikxset.tex
Normal file
88
src/Advanced/Random Walks/tikxset.tex
Normal file
@ -0,0 +1,88 @@
|
||||
\usetikzlibrary{arrows.meta}
|
||||
\usetikzlibrary{shapes.geometric}
|
||||
\usetikzlibrary{patterns}
|
||||
|
||||
% We put nodes in a separate layer, so we can
|
||||
% slightly overlap with paths for a perfect fit
|
||||
\pgfdeclarelayer{nodes}
|
||||
\pgfdeclarelayer{path}
|
||||
\pgfsetlayers{main,nodes}
|
||||
|
||||
% Layer settings
|
||||
\tikzset{
|
||||
% Layer hack, lets us write
|
||||
% later = * in scopes.
|
||||
layer/.style = {
|
||||
execute at begin scope={\pgfonlayer{#1}},
|
||||
execute at end scope={\endpgfonlayer}
|
||||
},
|
||||
%
|
||||
% Arrowhead tweak
|
||||
>={Latex[ width=2mm, length=2mm ]},
|
||||
%
|
||||
% Labels inside edges
|
||||
label/.style = {
|
||||
rectangle,
|
||||
% For automatic red background in solutions
|
||||
fill = \ORMCbgcolor,
|
||||
draw = none,
|
||||
rounded corners = 0mm
|
||||
},
|
||||
%
|
||||
% Nodes
|
||||
main/.style = {
|
||||
draw,
|
||||
circle,
|
||||
fill = white,
|
||||
line width = 0.35mm
|
||||
},
|
||||
accept/.style = {
|
||||
draw,
|
||||
circle,
|
||||
fill = white,
|
||||
double,
|
||||
double distance = 0.5mm,
|
||||
line width = 0.35mm
|
||||
},
|
||||
reject/.style = {
|
||||
draw,
|
||||
rectangle,
|
||||
fill = white,
|
||||
text = black,
|
||||
double,
|
||||
double distance = 0.5mm,
|
||||
line width = 0.35mm
|
||||
},
|
||||
start/.style = {
|
||||
draw,
|
||||
rectangle,
|
||||
fill = white,
|
||||
line width = 0.35mm
|
||||
},
|
||||
%
|
||||
% Loop tweaks
|
||||
loop above/.style = {
|
||||
min distance = 2mm,
|
||||
looseness = 8,
|
||||
out = 45,
|
||||
in = 135
|
||||
},
|
||||
loop below/.style = {
|
||||
min distance = 5mm,
|
||||
looseness = 10,
|
||||
out = 315,
|
||||
in = 225
|
||||
},
|
||||
loop right/.style = {
|
||||
min distance = 5mm,
|
||||
looseness = 10,
|
||||
out = 45,
|
||||
in = 315
|
||||
},
|
||||
loop left/.style = {
|
||||
min distance = 5mm,
|
||||
looseness = 10,
|
||||
out = 135,
|
||||
in = 215
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user