Advanced handouts
Add missing file Co-authored-by: Mark <mark@betalupi.com> Co-committed-by: Mark <mark@betalupi.com>
This commit is contained in:
85
src/Advanced/Mock a Mockingbird/main.tex
Executable file
85
src/Advanced/Mock a Mockingbird/main.tex
Executable file
@ -0,0 +1,85 @@
|
||||
% use [nosolutions] flag to hide solutions.
|
||||
% use [solutions] flag to show solutions.
|
||||
\documentclass[
|
||||
solutions,
|
||||
singlenumbering
|
||||
]{../../../lib/tex/ormc_handout}
|
||||
\usepackage{../../../lib/tex/macros}
|
||||
|
||||
|
||||
\usepackage{mathtools} % for \coloneqq
|
||||
|
||||
%\usepackage{lua-visual-debug}
|
||||
|
||||
\usepackage{censor}
|
||||
\usepackage{alltt}
|
||||
|
||||
|
||||
\newenvironment{helpbox}[1][0.5]{
|
||||
\begin{center}
|
||||
\begin{tcolorbox}[
|
||||
colback=white!90!black,
|
||||
colframe=white!90!black,
|
||||
coltitle=black,
|
||||
center title,
|
||||
width = #1\textwidth,
|
||||
leftrule = 0mm,
|
||||
rightrule = 0mm,
|
||||
toprule = 0mm,
|
||||
bottomrule = 0mm,
|
||||
left = 1mm,
|
||||
right = 1mm,
|
||||
top = 1mm,
|
||||
bottom = 1mm,
|
||||
toptitle = 1mm,
|
||||
lefttitle = 1mm,
|
||||
titlerule = 1pt,
|
||||
title={\textbf{Things you will need:}}
|
||||
]
|
||||
}{
|
||||
\end{tcolorbox}
|
||||
\end{center}
|
||||
}
|
||||
|
||||
% Logic block comment
|
||||
\newcommand{\cmnt}[1]{\textcolor{gray}{\# #1}}
|
||||
|
||||
\newcounter{allttLineCounter}
|
||||
\setcounter{allttLineCounter}{0}
|
||||
|
||||
\newcommand{\linenoref}[1]{\colorbox{gray!30!white}{#1}}
|
||||
\newcommand{\lineno}{
|
||||
\stepcounter{allttLineCounter}%
|
||||
\linenoref{\ifnum\value{allttLineCounter}<10 0\fi\arabic{allttLineCounter}}%
|
||||
}
|
||||
|
||||
% Redefine alltt so it automatically
|
||||
% resets allttLineCounter
|
||||
\let\oldalltt\alltt
|
||||
\renewenvironment{alltt}
|
||||
{\setcounter{allttLineCounter}{0}\begin{oldalltt}}
|
||||
{\end{oldalltt}}
|
||||
|
||||
|
||||
\newcommand{\thus}{\(\Rightarrow\)}
|
||||
\newcommand{\qed}{\(\blacksquare\)}
|
||||
|
||||
|
||||
|
||||
\uptitlel{Advanced 2}
|
||||
\uptitler{\smallurl{}}
|
||||
\title{To Mock a Mockingbird}
|
||||
\subtitle{
|
||||
Prepared by Mark on \today \\
|
||||
Based on a book of the same name.
|
||||
}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\maketitle
|
||||
|
||||
\input{parts/00 intro}
|
||||
\input{parts/01 tmam}
|
||||
\input{parts/02 kestrel}
|
||||
|
||||
\end{document}
|
6
src/Advanced/Mock a Mockingbird/meta.toml
Normal file
6
src/Advanced/Mock a Mockingbird/meta.toml
Normal file
@ -0,0 +1,6 @@
|
||||
[metadata]
|
||||
title = "Mock a Mockingbird"
|
||||
|
||||
[publish]
|
||||
handout = true
|
||||
solutions = true
|
46
src/Advanced/Mock a Mockingbird/parts/00 intro.tex
Normal file
46
src/Advanced/Mock a Mockingbird/parts/00 intro.tex
Normal file
@ -0,0 +1,46 @@
|
||||
\section{Introduction}
|
||||
|
||||
A certain enchanted forest is inhabited by talking birds. Each of these birds has a name, and will respond whenever it hears the name of another. Suppose you are exploring this forest and come across the bird $A$. You call the name of bird $B$. $A$ hears you and responds with the name of some other bird, which we will designate $AB$.
|
||||
|
||||
Bird $AB$ is, by definition, $A$'s response to $B$.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
As you wander around this forest, you quickly discover two interesting facts:
|
||||
\begin{enumerate}[itemsep = 1mm]
|
||||
\item $A$'s response to $B$ mustn't be the same as $B$'s response to $A$.
|
||||
\item Given three birds $A$, $B$, and $C$, $(AB)C$ and $A(BC)$ are not necessarily the same bird. \\
|
||||
Bird $A(BC)$ is $A$'s response to bird $BC$, while $(AB)C$ is $AB$'s response to $C$. \\
|
||||
Thus, $ABC$ is ambiguous. Parenthesis are mandatory.
|
||||
\end{enumerate}
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
You also find that this forest has two laws:
|
||||
\begin{enumerate}[itemsep = 1mm]
|
||||
\item \textit{The Law of Composition}: \\
|
||||
For any two birds $A$ and $B$, there must be a bird $C$ so that $Cx = A(Bx)$
|
||||
\item \textit{The Law of the Mockingbird}: \\
|
||||
The forest must contain the Mockingbird $M$, which always satisfies $Mx = xx$. \\
|
||||
In other words, the Mockingbird's response to any bird $x$ is the same as $x$'s response to itself.
|
||||
\end{enumerate}
|
||||
|
||||
\vfill
|
||||
|
||||
\definition{}
|
||||
We say a bird $A$ is fond of a bird $B$ if $A$ responds to $B$ with $B$. \\
|
||||
In other words, $A$ is fond of $B$ if $AB = B$.
|
||||
|
||||
\vfill
|
||||
|
||||
\definition{}
|
||||
We say a bird $C$ \textit{composes} $A$ with $B$ if for any bird $x$,
|
||||
$$
|
||||
Cx = A(Bx)
|
||||
$$
|
||||
In other words, this means that $C$'s response to $x$ is the same as $A$'s response to $B$'s response to $x$. \\
|
||||
Note that $C$ is exactly the kind of bird $L_1$ guarantees.
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
175
src/Advanced/Mock a Mockingbird/parts/01 tmam.tex
Normal file
175
src/Advanced/Mock a Mockingbird/parts/01 tmam.tex
Normal file
@ -0,0 +1,175 @@
|
||||
\section{To Mock a Mockingbird}
|
||||
|
||||
\problem{}
|
||||
Mark tells you that any bird $A$ is fond of at least one other bird. \\
|
||||
Complete his proof.
|
||||
\begin{alltt}
|
||||
let A \cmnt{Let A be any any bird.}
|
||||
let Cx = A(Mx) \cmnt{Define C as the composition of A and M}
|
||||
|
||||
\cmnt{The rest is up to you.}
|
||||
CC = ??
|
||||
\end{alltt}
|
||||
|
||||
|
||||
\begin{helpbox}
|
||||
\texttt{Law:} There exists a Mockingbird, $Mx := xx$ \\
|
||||
\texttt{Def:} $A$ is fond of $B$ if $AB = B$
|
||||
\end{helpbox}
|
||||
|
||||
|
||||
\begin{solution}
|
||||
\begin{alltt}
|
||||
\lineno{} let A \cmnt{Let A be any any bird.}
|
||||
\lineno{} let Cx = A(Mx) \cmnt{Define C as the composition of A and M}
|
||||
\lineno{} CC = A(MC)
|
||||
\lineno{} = A(CC) \qed{}
|
||||
\end{alltt}
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
\problem{}
|
||||
We say a bird $A$ is \textit{egocentric} if it is fond of itself. \\
|
||||
Show that the laws of the forest guarantee that at least one bird is egocentric.
|
||||
|
||||
|
||||
\begin{helpbox}
|
||||
\texttt{Law:} There exists a Mockingbird, $Mx := xx$ \\
|
||||
\texttt{Def:} $A$ is fond of $B$ if $AB = B$ \\
|
||||
\texttt{Lem:} Any bird is fond of at least one bird.
|
||||
\end{helpbox}
|
||||
|
||||
\begin{solution}
|
||||
\begin{alltt}
|
||||
\lineno{} \cmnt{We know M is fond of at least one bird.}
|
||||
\lineno{} let E so that ME = E
|
||||
\lineno{}
|
||||
\lineno{} ME = E \cmnt{By definition of fondness}
|
||||
\lineno{} ME = EE \cmnt{By definition of M}
|
||||
\lineno{} \thus{} EE = E \qed{}
|
||||
\end{alltt}
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
\definition{}
|
||||
We say a bird $A$ is \textit{agreeable} if for all birds $B$, there is at least one bird $x$ on which $A$ and $B$ agree. \\
|
||||
In other words, $A$ is agreeable if given any $B$, we can find a bird $x$ satisfying $Ax = Bx$.
|
||||
|
||||
\problem{}
|
||||
Is the Mockingbird agreeable?
|
||||
|
||||
\begin{solution}
|
||||
We know that $Mx = xx$. \\
|
||||
|
||||
From this definition, we see that $M$ agrees with any $x$ on $x$ itself.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Take two birds $A$ and $B$. Let $C$ be their composition. \\
|
||||
Show that if $C$ is agreeable, $A$ is agreeable.
|
||||
\begin{alltt}
|
||||
\cmnt{Given information}
|
||||
let A, B
|
||||
let Cx = A(Bx)
|
||||
|
||||
let D \cmnt{Arbitrary bird}
|
||||
let Ex = D(Bx) \cmnt{Define E as the composition of D and B}
|
||||
Cy = ??
|
||||
\end{alltt}
|
||||
|
||||
\begin{helpbox}[0.65]
|
||||
\texttt{Def:} $A$ is agreeable if $Ax = Bx$ for all $B$ with some $x$. \\
|
||||
\texttt{Law:} For any $A, B$, there is C defined by Cx = A(Bx)
|
||||
\end{helpbox}
|
||||
|
||||
|
||||
\begin{solution}
|
||||
\begin{alltt}
|
||||
\lineno{} \cmnt{Given information}
|
||||
\lineno{} let A, B
|
||||
\lineno{} let Cx = A(Bx)
|
||||
\lineno{}
|
||||
\lineno{} let D \cmnt{Arbitrary bird}
|
||||
\lineno{} let Ex = D(Bx) \cmnt{Define E as the composition of D and B}
|
||||
\lineno{} let y so that Cy = Ey \cmnt{Such a y must exist because C is agreeable}
|
||||
\lineno{}
|
||||
\lineno{} A(By) = Ey
|
||||
\lineno{} = D(By) \qed{}
|
||||
\end{alltt}
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\problem{}
|
||||
Given three arbitrary birds $A$, $B$, and $C$, show that there exists a bird $D$ satisfying $Dx = A(B(Cx))$
|
||||
|
||||
\begin{solution}
|
||||
\begin{alltt}
|
||||
\lineno{} let A, B, C
|
||||
\lineno{}
|
||||
\lineno{} \cmnt{Invoke the Law of Composition:}
|
||||
\lineno{} let Qx = B(Cx)
|
||||
\lineno{} let Dx = A(Qx)
|
||||
\lineno{}
|
||||
\lineno{} Dx = A(Qx)
|
||||
\lineno{} = A(B(Cx)) \qed{}
|
||||
\end{alltt}
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
\definition{}
|
||||
We say two birds $A$ and $B$ are \textit{compatible} if there are birds $x$ and $y$ so that $Ax = y$ and $By = x$. \\
|
||||
Note that $x$ and $y$ may be the same bird. \\
|
||||
|
||||
\problem{}
|
||||
Show that any two birds in this forest are compatible. \\
|
||||
\begin{alltt}
|
||||
let A, B
|
||||
let Cx = A(Bx)
|
||||
\end{alltt}
|
||||
|
||||
\begin{helpbox}
|
||||
\texttt{Law:} Law of composition \\
|
||||
\texttt{Lem:} Any bird is fond of at least one bird.
|
||||
\end{helpbox}
|
||||
|
||||
\begin{solution}
|
||||
\begin{alltt}
|
||||
\lineno{} let A, B
|
||||
\lineno{}
|
||||
\lineno{} let Cx = A(Bx) \cmnt{Composition}
|
||||
\lineno{} let y = Cy \cmnt{Let C be fond of y}
|
||||
\lineno{}
|
||||
\lineno{} Cy = y
|
||||
\lineno{} = A(By)
|
||||
\lineno{}
|
||||
\lineno{} let x = By \cmnt{Rename By to x}
|
||||
\lineno{} Ax = y \qed{}
|
||||
\end{alltt}
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Show that any bird that is fond of at least one bird is compatible with itself.
|
||||
|
||||
\begin{solution}
|
||||
\begin{alltt}
|
||||
\lineno{} let A
|
||||
\lineno{} let x so that Ax = x \cmnt{A is fond of at least one other bird}
|
||||
\lineno{} Ax = x \qed{}
|
||||
\end{alltt}
|
||||
|
||||
That's it.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
136
src/Advanced/Mock a Mockingbird/parts/02 kestrel.tex
Normal file
136
src/Advanced/Mock a Mockingbird/parts/02 kestrel.tex
Normal file
@ -0,0 +1,136 @@
|
||||
\section{The Curious Kestrel}
|
||||
|
||||
\definition{}
|
||||
Recall that a bird is \textit{egocentric} if it is fond of itself. \\
|
||||
A bird is \textit{hopelessly egocentric} if $Bx = B$ for all birds $x$.
|
||||
|
||||
\definition{}
|
||||
More generally, we say that a bird $A$ is \textit{fixated} on a bird $B$ if $Ax = B$ for all $x$. \\
|
||||
Convince yourself that a hopelessly egocentric bird is fixated on itself.
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
Say $A$ is fixated on $B$. Is $A$ fond of $B$?
|
||||
|
||||
\begin{solution}
|
||||
Yes! See the following proof.
|
||||
\begin{alltt}
|
||||
\lineno{} let A
|
||||
\lineno{} let B so that Ax = B
|
||||
\lineno{} \thus{} AB = B \qed{}
|
||||
\end{alltt}
|
||||
\end{solution}
|
||||
\vfill
|
||||
|
||||
|
||||
|
||||
\definition{}
|
||||
The \textit{Kestrel} $K$ is defined by the following relationship:
|
||||
$$
|
||||
(Kx)y = x~~~\forall x, y
|
||||
$$
|
||||
In other words, this means that for every bird $x$, the bird $Kx$ is fixated on $x$.
|
||||
|
||||
\problem{}
|
||||
Show that an egocentric Kestrel is hopelessly egocentric.
|
||||
|
||||
\begin{solution}
|
||||
\begin{alltt}
|
||||
\lineno{} KK = K
|
||||
\lineno{} \thus{} (KK)y = K \cmnt{By definition of the Kestrel}
|
||||
\lineno{} \thus{} Ky = K \qed{} \cmnt{By 01}
|
||||
\end{alltt}
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
\problem{}
|
||||
Assume the forest contains a Kestrel. \\
|
||||
Given the Law of Composition and the Law of the Mockingbird, show that at least one bird is hopelessly egocentric.
|
||||
|
||||
\begin{helpbox}[0.75]
|
||||
\texttt{Def:} $K$ is defined by $(Kx)y = x$ \\
|
||||
\texttt{Def:} $A$ is fond of $B$ if $AB = B$ \\
|
||||
\texttt{???:} You'll need one more result from the previous section. Good luck!
|
||||
\end{helpbox}
|
||||
|
||||
\begin{solution}
|
||||
The final piece is a lemma we proved earlier: \\
|
||||
Any bird is fond of at least one bird
|
||||
|
||||
\begin{alltt}
|
||||
\lineno{} let A so that KA = A \cmnt{Any bird is fond of at least one bird}
|
||||
\lineno{} (KA)y = y \cmnt{By definition of the kestrel}
|
||||
\lineno{} \thus{} Ay = A \qed{} \cmnt{By 01}
|
||||
\end{alltt}
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{Kestrel Left-Cancellation}<leftcancel>
|
||||
In general, $Ax = Ay$ does not imply $x = y$. However, this is true if $A$ is $K$. \\
|
||||
Show that $Kx = Ky \implies x = y$.
|
||||
|
||||
\begin{alltt}
|
||||
\cmnt{This is a hint.}
|
||||
let x, y so that Kx = Ky
|
||||
\end{alltt}
|
||||
|
||||
\begin{solution}
|
||||
\begin{alltt}
|
||||
\lineno{} let x, y so that Kx = Ky
|
||||
\lineno{} let z
|
||||
\lineno{}
|
||||
\lineno{} (Kx)z = (Ky)z \cmnt{By 01}
|
||||
\lineno{}
|
||||
\lineno{} \cmnt{By the definition of K}
|
||||
\lineno{} (Kx)z = x
|
||||
\lineno{} (Ky)z = y
|
||||
\lineno{}
|
||||
\lineno{} \thus{} x = (Kx)z = (Ky)z = y \qed{}
|
||||
\end{alltt}
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\problem{}
|
||||
Show that if $K$ is fond of $Kx$, $K$ is fond of $x$.
|
||||
|
||||
\begin{solution}
|
||||
\begin{alltt}
|
||||
\lineno{} let x so that K(Kx) = Kx
|
||||
\lineno{} (K(Kx))y = (Kx)y
|
||||
\lineno{} = Kx \cmnt{By definition of K}
|
||||
\lineno{} x = Kx \cmnt{By 03 and definition of K}
|
||||
\end{alltt}
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
An egocentric Kestrel must be extremely lonely. Why is this?
|
||||
|
||||
\begin{solution}
|
||||
If a Kestrel is egocentric, it must be the only bird in the forest!
|
||||
|
||||
\begin{alltt}
|
||||
\lineno{} \cmnt{Given}
|
||||
\lineno{} Kx = K for some x
|
||||
\lineno{} \cmnt{We have shown that an egocentric kestrel is hopelessly egocentric}
|
||||
\lineno{} Kx = K for all x
|
||||
\lineno{}
|
||||
\lineno{} let x, y
|
||||
\lineno{} Kx = K
|
||||
\lineno{} Ky = K
|
||||
\lineno{} Kx = Ky
|
||||
\lineno{} x = y for all x, y \cmnt{By \ref{leftcancel}}
|
||||
\lineno{} x = y = K \qed{} \cmnt{By 10, and since K exists}
|
||||
\end{alltt}
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
Reference in New Issue
Block a user