Advanced handouts

Add missing file
Co-authored-by: Mark <mark@betalupi.com>
Co-committed-by: Mark <mark@betalupi.com>
This commit is contained in:
2025-01-22 12:28:44 -08:00
parent 13b65a6c64
commit dd4abdbab0
177 changed files with 20658 additions and 0 deletions

View File

@ -0,0 +1,38 @@
[doc]
name = "Definable Sets"
bundle = "https://data1.fullyjustified.net/tlextras-2022.0r0.tar"
extra_paths = [
"../../resources"
]
[doc.metadata]
publish = true
show_solutions = true
title = "Definable Sets"
description = ""
favorite = false
[[output]]
shell_escape = false
tex_format = "latex"
type = "pdf"
name = "handout"
inputs = [
{ inline = "\\def\\argNoSolutions{1}" },
"week 1.tex"
]
[[output]]
shell_escape = false
tex_format = "latex"
type = "pdf"
name = "solutions"
inputs = [
{ inline = "\\def\\argYesSolutions{1}" },
"week 1.tex"
]

View File

@ -0,0 +1,29 @@
\documentclass[
solutions,
singlenumbering
]{../../../lib/tex/ormc_handout}
\usepackage{../../../lib/tex/macros}
\usepackage{units}
\input{src/tikzset}
\uptitlel{Advanced 2}
\uptitler{\smallurl{}}
\title{Intro to Quantum Computing}
\subtitle{Prepared by Mark on \today{}}
\def\ket#1{\left|#1\right\rangle}
\def\bra#1{\left\langle#1\right|}
\begin{document}
\maketitle
\input{src/parts/01 bits}
\input{src/parts/02 qubit}
\input{src/parts/03 two qubits}
\input{src/parts/04 logic gates}
\input{src/parts/05 quantum gates}
\input{src/parts/06 hxh}
\input{src/parts/07 superdense}
\input{src/parts/08 teleport}
\end{document}

View File

@ -0,0 +1,6 @@
[metadata]
title = "Quantum Computing"
[publish]
handout = true
solutions = true

View File

@ -0,0 +1,54 @@
% Copyright (C) 2023 <Mark (mark@betalupi.com)>
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% You may have received a copy of the GNU General Public License
% along with this program. If not, see <https://www.gnu.org/licenses/>.
%
%
%
% If you edit this, please give credit!
% Quality handouts take time to make.
% use the [nosolutions] flag to hide solutions,
% use the [solutions] flag to show solutions.
\documentclass[
solutions,
singlenumbering
]{../../../../lib/tex/ormc_handout}
\usepackage{../../../../lib/tex/macros}
\usepackage{units}
\input{tikzset}
\uptitlel{Advanced 2}
\uptitler{\smallurl{}}
\title{Intro to Quantum Computing}
\subtitle{Prepared by Mark on \today{}}
\def\ket#1{\left|#1\right\rangle}
\def\bra#1{\left\langle#1\right|}
% TODO: spend more time on probabalastic bits.
% This could even be its own handout, especially
% for younger classes!
% Why are qubits amplitudes instead of probabilities?
% (Asher question)
\begin{document}
\maketitle
\input{parts/01 bits}
\input{parts/02 qubit}
\input{parts/03 two qubits}
\input{parts/04 logic gates}
\input{parts/05 quantum gates}
\input{parts/06 hxh}
\input{parts/07 superdense}
\input{parts/08 teleport}
\end{document}

View File

@ -0,0 +1,565 @@
\section{Probabilistic Bits}
\definition{}
As we already know, a \textit{classical bit} may take the values \texttt{0} and \texttt{1}. \par
We can model this with a two-sided coin, one face of which is labeled \texttt{0}, and the other, \texttt{1}. \par
\vspace{2mm}
Of course, if we toss such a \say{bit-coin,} we'll get either \texttt{0} or \texttt{1}. \par
We'll denote the probability of getting \texttt{0} as $p_0$, and the probability of getting \texttt{1} as $p_1$. \par
As with all probabilities, $p_0 + p_1$ must be equal to 1.
\vfill
\definition{}
Say we toss a \say{bit-coin} and don't observe the result. We now have a \textit{probabilistic bit}, with a probability $p_0$
of being \texttt{0}, and a probability $p_1$ of being \texttt{1}.
\vspace{2mm}
We'll represent this probabilistic bit's \textit{state} as a vector:
$\left[\begin{smallmatrix}
p_0 \\ p_1
\end{smallmatrix}\right]$ \par
We do \textbf{not} assume this coin is fair, and thus $p_0$ might not equal $p_1$.
\note{
This may seem a bit redundant: since $p_0 + p_1$, we can always calculate one probability given the other. \\
We'll still include both probabilities in the state vector, since this provides a clearer analogy to quantum bits.
}
\vfill
\definition{}
The simplest probabilistic bit states are of course $[0]$ and $[1]$, defined as follows:
\begin{itemize}
\item $[0] = \left[\begin{smallmatrix} 1 \\ 0 \end{smallmatrix}\right]$
\item $[1] = \left[\begin{smallmatrix} 0 \\ 1 \end{smallmatrix}\right]$
\end{itemize}
That is, $[0]$ represents a bit that we known to be \texttt{0}, \par
and $[1]$ represents a bit we know to be \texttt{1}.
\vfill
\definition{}
$[0]$ and $[1]$ form a \textit{basis} for all possible probabilistic bit states: \par
Every other probabilistic bit can be written as a \textit{linear combination} of $[0]$ and $[1]$:
\begin{equation*}
\begin{bmatrix} p_0 \\ p_1 \end{bmatrix}
=
p_0 \begin{bmatrix} 1 \\ 0 \end{bmatrix} +
p_1 \begin{bmatrix} 0 \\ 1 \end{bmatrix}
=
p_0 [0] + p_1 [1]
\end{equation*}
\vfill
\pagebreak
\problem{}
Every possible state of a probabilistic bit is a two-dimensional vector. \par
Draw all possible states on the axis below.
\begin{center}
\begin{tikzpicture}[scale = 2.0]
\fill[color = black] (0, 0) circle[radius=0.05];
\node[below left] at (0, 0) {$\left[\begin{smallmatrix} 0 \\ 0 \end{smallmatrix}\right]$};
\draw[->] (0, 0) -- (1.2, 0);
\node[right] at (1.2, 0) {$p_0$};
\fill[color = oblue] (1, 0) circle[radius=0.05];
\node[below] at (1, 0) {$[0]$};
\draw[->] (0, 0) -- (0, 1.2);
\node[above] at (0, 1.2) {$p_1$};
\fill[color = oblue] (0, 1) circle[radius=0.05];
\node[left] at (0, 1) {$[1]$};
\end{tikzpicture}
\end{center}
\begin{solution}
\begin{center}
\begin{tikzpicture}[scale = 2.0]
\fill[color = black] (0, 0) circle[radius=0.05];
\node[below left] at (0, 0) {$\left[\begin{smallmatrix} 0 \\ 0 \end{smallmatrix}\right]$};
\draw[ored, -, line width = 2] (0, 1) -- (1, 0);
\draw[->] (0, 0) -- (1.2, 0);
\node[right] at (1.2, 0) {$p_0$};
\fill[color = oblue] (1, 0) circle[radius=0.05];
\node[below] at (1, 0) {$[0]$};
\draw[->] (0, 0) -- (0, 1.2);
\node[above] at (0, 1.2) {$p_1$};
\fill[color = oblue] (0, 1) circle[radius=0.05];
\node[left] at (0, 1) {$[1]$};
\end{tikzpicture}
\end{center}
\end{solution}
\vfill
\pagebreak
\section{Measuring Probabilistic Bits}
\definition{}
As we noted before, a probabilistic bit represents a coin we've tossed but haven't looked at. \par
We do not know whether the bit is \texttt{0} or \texttt{1}, but we do know the probability of both of these outcomes. \par
\vspace{2mm}
If we \textit{measure} (or \textit{observe}) a probabilistic bit, we see either \texttt{0} or \texttt{1}---and thus our
knowledge of its state is updated to either $[0]$ or $[1]$, since we now certainly know what face the coin landed on.
\vspace{2mm}
Since measurement changes what we know about a probabilistic bit, it changes the probabilistic bit's state.
When we measure a bit, it's state \textit{collapses} to either $[0]$ or $[1]$, and the original state of the
bit vanishes. We \textit{cannot} recover the state $[x_0, x_1]$ from a measured probabilistic bit.
\definition{Multiple bits}
Say we have two probabilistic bits, $x$ and $y$, \par
with states
$[x]=[ x_0, x_1]$
and
$[y]=[y_0, y_1]$
\vspace{2mm}
The \textit{compound state} of $[x]$ and $[y]$ is exactly what it sounds like: \par
It is the probabilistic two-bit state $\ket{xy}$, where the probabilities of the first bit are
determined by $[x]$, and the probabilities of the second are determined by $[y]$.
\problem{}<firstcompoundstate>
Say $[x] = [\nicefrac{2}{3}, \nicefrac{1}{3}]$ and $[y] = [\nicefrac{3}{4}, \nicefrac{1}{4}]$. \par
\begin{itemize}[itemsep = 1mm]
\item If we measure $x$ and $y$ simultaneously, \par
what is the probability of getting each of \texttt{00}, \texttt{01}, \texttt{10}, and \texttt{11}?
\item If we measure $y$ first and observe \texttt{1}, \par
what is the probability of getting each of \texttt{00}, \texttt{01}, \texttt{10}, and \texttt{11}?
\end{itemize}
\note[Note]{$[x]$ and $[y]$ are column vectors, but I've written them horizontally to save space.}
\vfill
\problem{}
Say $[x] = [\nicefrac{2}{3}, \nicefrac{1}{3}]$ and $[y] = [\nicefrac{3}{4}, \nicefrac{1}{4}]$. \par
What is the probability that $x$ and $y$ produce different outcomes?
\vfill
\pagebreak
\section{Tensor Products}
\definition{Tensor Products}
The \textit{tensor product} of two vectors is defined as follows:
\begin{equation*}
\begin{bmatrix}
x_1 \\ x_2
\end{bmatrix}
\otimes
\begin{bmatrix}
y_1 \\ y_2
\end{bmatrix}
=
\begin{bmatrix}
x_1
\begin{bmatrix}
y_1 \\ y_2
\end{bmatrix}
\\[4mm]
x_2
\begin{bmatrix}
y_1 \\ y_2
\end{bmatrix}
\end{bmatrix}
=
\begin{bmatrix}
x_1y_1 \\[1mm]
x_1y_2 \\[1mm]
x_2y_1 \\[1mm]
x_2y_2 \\[0.5mm]
\end{bmatrix}
\end{equation*}
That is, we take our first vector, multiply the second
vector by each of its components, and stack the result.
You could think of this as a generalization of scalar
mulitiplication, where scalar mulitiplication is a
tensor product with a vector in $\mathbb{R}^1$:
\begin{equation*}
a
\begin{bmatrix}
x_1 \\ x_2
\end{bmatrix}
=
\begin{bmatrix}
a_1
\end{bmatrix}
\otimes
\begin{bmatrix}
y_1 \\ y_2
\end{bmatrix}
=
\begin{bmatrix}
a_1
\begin{bmatrix}
y_1 \\ y_2
\end{bmatrix}
\end{bmatrix}
=
\begin{bmatrix}
a_1y_1 \\[1mm]
a_1y_2
\end{bmatrix}
\end{equation*}
\problem{}
Say $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^m$. \par
What is the dimension of $x \otimes y$?
\vfill
\problem{}<basistp>
What is the pairwise tensor product
$
\Bigl\{
\left[
\begin{smallmatrix}
1 \\ 0 \\ 0
\end{smallmatrix}
\right],
\left[
\begin{smallmatrix}
0 \\ 1 \\ 0
\end{smallmatrix}
\right],
\left[
\begin{smallmatrix}
0 \\ 0 \\ 1
\end{smallmatrix}
\right]
\Bigr\}
\otimes
\Bigl\{
\left[
\begin{smallmatrix}
1 \\ 0
\end{smallmatrix}
\right],
\left[
\begin{smallmatrix}
0 \\ 1
\end{smallmatrix}
\right]
\Bigr\}
$?
\note{in other words, distribute the tensor product between every pair of vectors.}
\vfill
\problem{}
What is the \textit{span} of the vectors we found in \ref{basistp}? \par
In other words, what is the set of vectors that can be written as linear combinations of the vectors above?
\vfill
% This is wrong, but there's something here.
% maybe fix later?
%
%Look through the above problems and convince yourself of the following fact: \par
%If $a$ is a basis of $A$ and $b$ is a basis of $B$, $a \otimes b$ is a basis of $A \times B$. \par
%\note{If you don't understand what this says, ask an instructor. \\ This is the reason we did the last few problems!}
%
%\begin{instructornote}
% \textbf{The idea here is as follows:}
%
% If $a$ is in $\{\texttt{0}, \texttt{1}\}$ and $b$ is in $\{\texttt{0}, \texttt{1}\}$,
% the values $ab$ can take are
% $\{\texttt{0}, \texttt{1}\} \times \{\texttt{0}, \texttt{1}\} = \{\texttt{00}, \texttt{01}, \texttt{10}, \texttt{11}\}$.
%
% \vspace{2mm}
%
% The same is true of any other state set: if $a$ takes values in $A$ and $b$ takes values in $B$, \par
% the compound state $(a,b)$ takes values in $A \times B$.
%
% \vspace{2mm}
%
% We would like to do the same with probabilistic bits. \par
% Given bits $\ket{a}$ and $\ket{b}$, how should we represent the state of $\ket{ab}$?
%\end{instructornote}
\pagebreak
\problem{}
Say $[x] = [\nicefrac{2}{3}, \nicefrac{1}{3}]$ and $[y] = [\nicefrac{3}{4}, \nicefrac{1}{4}]$. \par
What is $[x] \otimes [y]$? How does this relate to \ref{firstcompoundstate}?
\vfill
\problem{}
The compound state of two vector-form bits is their tensor product. \par
Compute the following. Is the result what we'd expect?
\begin{itemize}
\item $[0] \otimes [0]$
\item $[0] \otimes [1]$
\item $[1] \otimes [0]$
\item $[1] \otimes [1]$
\end{itemize}
\hint{
Remember that
$[0] = \left[\begin{smallmatrix} 1 \\ 0 \end{smallmatrix}\right]$
and
$[1] = \left[\begin{smallmatrix} 0 \\ 1 \end{smallmatrix}\right]$.
}
\vfill
\problem{}<fivequant>
Of course, writing $[0] \otimes [1]$ is a bit excessive. We'll shorten this notation to $[01]$. \par
\vspace{2mm}
In fact, we could go further: if we wanted to write the set of bits $[1] \otimes [1] \otimes [0] \otimes [1]$, \par
we could write $[1101]$---but a shorter alternative is $[13]$, since $13$ is \texttt{1101} in binary.
\vspace{2mm}
Write $[5]$ as three-bit probabilistic state. \par
\begin{solution}
$[5] = [101] = [1] \otimes [0] \otimes [1] = [0,0,0,0,0,1,0,0]^T$ \par
Notice how we're counting from the top, with $[000] = [1,0,...,0]$ and $[111] = [0, ..., 0, 1]$.
\end{solution}
\vfill
\problem{}
Write the three-bit states $[0]$ through $[7]$ as column vectors. \par
\hint{You do not need to compute every tensor product. Do a few and find the pattern.}
\vfill
\pagebreak
\section{Operations on Probabilistic Bits}
Now that we can write probabilistic bits as vectors, we can represent operations on these bits
with linear transformations---in other words, as matrices.
\definition{}
Consider the NOT gate, which operates as follows: \par
\begin{itemize}
\item $\text{NOT}[0] = [1]$
\item $\text{NOT}[1] = [0]$
\end{itemize}
What should NOT do to a probabilistic bit $[x_0, x_1]$? \par
If we return to our coin analogy, we can think of the NOT operation as
flipping a coin we have already tossed, without looking at its state.
Thus,
\begin{equation*}
\text{NOT} \begin{bmatrix}
x_0 \\ x_1
\end{bmatrix} = \begin{bmatrix}
x_1 \\ x_0
\end{bmatrix}
\end{equation*}
\begin{ORMCbox}{Review: Multiplying Vectors by Matrices}{black!10!white}{black!65!white}
\begin{equation*}
Av =
\begin{bmatrix}
1 & 2 \\
3 & 4 \\
\end{bmatrix}
\begin{bmatrix}
v_0 \\ v_1
\end{bmatrix}
=
\begin{bmatrix}
1v_0 + 2v_1 \\
3v_0 + 4v_1
\end{bmatrix}
\end{equation*}
Note that each element of $Av$ is the dot product of a row in $A$ and a column in $v$.
\end{ORMCbox}
\problem{}
Compute the following product:
\begin{equation*}
\begin{bmatrix}
1 & 0.5 \\ 0 & 1
\end{bmatrix}
\begin{bmatrix}
3 \\ 2
\end{bmatrix}
\end{equation*}
\vfill
\generic{Remark:}
Also, recall that every matrix is linear map, and that every linear map may be written as a matrix. \par
We often use the terms \textit{matrix}, \textit{transformation}, and \textit{linear map} interchangeably.
\pagebreak
\problem{}
Find the matrix that represents the NOT operation on one probabilistic bit.
\begin{solution}
\begin{equation*}
\begin{bmatrix}
0 & 1 \\ 1 & 0
\end{bmatrix}
\end{equation*}
\end{solution}
\vfill
\problem{Extension by linearity}
Say we have an arbitrary operation $M$. \par
If we know how $M$ acts on $[1]$ and $[0]$, can we compute $M[x]$ for an arbitrary state $[x]$? \par
Say $[x] = [x_0, x_1]$.
\begin{itemize}
\item What is the probability we observe $0$ when we measure $x$?
\item What is the probability that we observe $M[0]$ when we measure $Mx$?
\end{itemize}
\vfill
\problem{}<linearextension>
Write $M[x_0, x_1]$ in terms of $M[0]$, $M[1]$, $x_0$, and $x_1$.
\begin{solution}
\begin{equation*}
M \begin{bmatrix}
x_0 \\ x_1
\end{bmatrix}
=
x_0 M \begin{bmatrix}
1 \\ 0
\end{bmatrix}
+
x_1 M \begin{bmatrix}
0 \\ 1
\end{bmatrix}
=
x_0 M [0] +
x_1 M [1]
\end{equation*}
\end{solution}
\vfill
\generic{Remark:}
Every matrix represents a \textit{linear} map, so the following is always true:
\begin{equation*}
A \times (px + qy) = pAx + qAy
\end{equation*}
\ref{linearextension} is just a special case of this fact.
\pagebreak

View File

@ -0,0 +1,347 @@
\section{One Qubit}
Quantum bits (or \textit{qubits}) are very similar to probabilistic bits, but have one major difference: \par
probabilities are replaced with \textit{amplitudes}.
\vspace{2mm}
Of course, a qubit can take the values \texttt{0} and \texttt{1}, which are denoted $\ket{0}$ and $\ket{1}$. \par
Like probabilistic bits, a quantum bit is written as a linear combination of $\ket{0}$ and $\ket{1}$:
\begin{equation*}
\ket{\psi} = \psi_0\ket{0} + \psi_1\ket{1}
\end{equation*}
Such linear combinations are called \textit{superpositions}.
\vspace{2mm}
The $\ket{~}$ you see in the expressions above is called a \say{ket,} and denotes a column vector. \par
$\ket{0}$ is pronounced \say{ket zero,} and $\ket{1}$ is pronounced \say{ket one.} This is called bra-ket notation. \par
\note[Note]{$\bra{0}$ is called a \say{bra,} but we won't worry about that for now.}
\vspace{2mm}
This is very similar to the \say{box} $[~]$ notation we used for probabilistic bits. \par
As before, we will write $\ket{0} = \left[\begin{smallmatrix} 1 \\ 0 \end{smallmatrix}\right]$
and $\ket{1} = \left[\begin{smallmatrix} 0 \\ 1 \end{smallmatrix}\right]$.
\vspace{8mm}
Recall that probabilistic bits are subject to the restriction that $p_0 + p_1 = 1$. \par
Quantum bits have a similar condition: $\psi_0^2 + \psi_1^2 = 1$. \par
Note that this implies that $\psi_0$ and $\psi_1$ are both in $[-1, 1]$. \par
Quantum amplitudes may be negative, but probabilistic bit probabilities cannot.
\vspace{2mm}
If we plot the set of valid quantum states on our plane, we get a unit circle centered at the origin:
\begin{center}
\begin{tikzpicture}[scale=1.5]
\draw[dashed] (0,0) circle(1);
\fill[color = black] (0, 0) circle[radius=0.05];
\draw[->] (0, 0) -- (1.2, 0);
\fill[color = oblue] (1, 0) circle[radius=0.05];
\node[below right] at (1, 0) {$\ket{0}$};
\draw[->] (0, 0) -- (0, 1.2);
\fill[color = oblue] (0, 1) circle[radius=0.05];
\node[above left] at (0, 1) {$\ket{1}$};
\fill[color = ored] (0.87, 0.5) circle[radius=0.05];
\node[above right] at (0.87, 0.5) {$\ket{\psi}$};
\end{tikzpicture}
\end{center}
Recall that the set of probabilistic bits forms a line instead:
\begin{center}
\begin{tikzpicture}[scale = 1.5]
\fill[color = black] (0, 0) circle[radius=0.05];
\node[below left] at (0, 0) {$\left[\begin{smallmatrix} 0 \\ 0 \end{smallmatrix}\right]$};
\draw[ored, -, line width = 2] (0, 1) -- (1, 0);
\draw[->] (0, 0) -- (1.2, 0);
\node[right] at (1.2, 0) {$p_0$};
\fill[color = oblue] (1, 0) circle[radius=0.05];
\node[below] at (1, 0) {$[0]$};
\draw[->] (0, 0) -- (0, 1.2);
\node[above] at (0, 1.2) {$p_1$};
\fill[color = oblue] (0, 1) circle[radius=0.05];
\node[left] at (0, 1) {$[1]$};
\end{tikzpicture}
\end{center}
\problem{}
In the above unit circle, the counterclockwise angle from $\ket{0}$ to $\ket{\psi}$ is $30^\circ$\hspace{-1ex}. \par
Write $\ket{\psi}$ as a linear combination of $\ket{0}$ and $\ket{1}$.
\vfill
\pagebreak
\definition{Measurement I}
Just like a probabilistic bit, we must observed $\ket{0}$ or $\ket{1}$ when we measure a qubit. \par
If we were to measure $\ket{\psi} = \psi_0\ket{0} + \psi_1\ket{1}$, we'd observe either $\ket{0}$ or $\ket{1}$, \par
with the following probabilities:
\begin{itemize}[itemsep = 2mm, topsep = 2mm]
\item $\mathcal{P}(\ket{1}) = \psi_1^2$
\item $\mathcal{P}(\ket{0}) = \psi_0^2$
\end{itemize}
\note{Note that $\mathcal{P}(\ket{0}) + \mathcal{P}(\ket{1}) = 1$.}
\vspace{2mm}
As before, $\ket{\psi}$ \textit{collapses} when it is measured: its state becomes that which we observed in our measurement,
leaving no trace of the previous superposition. \par
\problem{}
\begin{itemize}
\item What is the probability we observe $\ket{0}$ when we measure $\ket{\psi}$? \par
\item What can we observe if we measure $\ket{\psi}$ a second time? \par
\item What are these probabilities for $\ket{\varphi}$?
\end{itemize}
\begin{center}
\begin{tikzpicture}[scale=1.5]
\draw[dashed] (0,0) circle(1);
\fill[color = black] (0, 0) circle[radius=0.05];
\draw[->] (0, 0) -- (1.2, 0);
\fill[color = oblue] (1, 0) circle[radius=0.05];
\node[below right] at (1, 0) {$\ket{0}$};
\draw[->] (0, 0) -- (0, 1.2);
\fill[color = oblue] (0, 1) circle[radius=0.05];
\node[above left] at (0, 1) {$\ket{1}$};
\draw[dotted] (0, 0) -- (0.87, 0.5);
\draw[color=gray,->] (0.5, 0.0) arc (0:30:0.5);
\node[right, color=gray] at (0.47, 0.12) {$30^\circ$};
\fill[color = ored] (0.87, 0.5) circle[radius=0.05];
\node[above right] at (0.87, 0.5) {$\ket{\psi}$};
\draw[dotted] (0, 0) -- (-0.707, -0.707);
\draw[color=gray,->] (0.25, 0.0) arc (0:-135:0.25);
\node[below, color=gray] at (0.2, -0.2) {$135^\circ$};
\fill[color = ored] (-0.707, -0.707) circle[radius=0.05];
\node[below left] at (-0.707, -0.707) {$\ket{\varphi}$};
\end{tikzpicture}
\end{center}
\vfill
As you may have noticed, we don't need two coordinates to fully define a quibit's state. \par
We can get by with one coordinate just as well.
Instead of referring to each state using its cartesian coordinates $\psi_0$ and $\psi_1$, \par
we can address it using its \textit{polar angle} $\theta$, measured from $\ket{0}$ counterclockwise:
\begin{center}
\begin{tikzpicture}[scale=1.5]
\draw[dashed] (0,0) circle(1);
\fill[color = black] (0, 0) circle[radius=0.05];
\draw[dotted] (0, 0) -- (0.707, 0.707);
\draw[color=gray,->] (0.5, 0.0) arc (0:45:0.5);
\node[above right, color=gray] at (0.5, 0) {$\theta$};
\draw[->] (0, 0) -- (1.2, 0);
\fill[color = oblue] (1, 0) circle[radius=0.05];
\node[below right] at (1, 0) {$\ket{0}$};
\draw[->] (0, 0) -- (0, 1.2);
\fill[color = oblue] (0, 1) circle[radius=0.05];
\node[above left] at (0, 1) {$\ket{1}$};
\fill[color = ored] (0.707, 0.707) circle[radius=0.05];
\node[above right] at (0.707, 0.707) {$\ket{\psi}$};
\end{tikzpicture}
\end{center}
\problem{}
Find $\psi_0$ and $\psi_1$ in terms of $\theta$ for an arbitrary qubit $\psi$.
\vfill
\pagebreak
\problem{}
Consider the following qubit states:
\null\hfill\begin{minipage}{0.48\textwidth}
\begin{equation*}
\ket{+} = \frac{\ket{0} + \ket{1}}{\sqrt{2}}
\end{equation*}
\end{minipage}\hfill\begin{minipage}{0.48\textwidth}
\begin{equation*}
\ket{-} = \frac{\ket{0} - \ket{1}}{\sqrt{2}}
\end{equation*}
\end{minipage}\hfill\null
\begin{itemize}
\item Where are these on the unit circle?
\item What are their polar angles?
\item What are the probabilities of observing $\ket{0}$ and $\ket{1}$ when measuring $\ket{+}$ and $\ket{-}$?
\end{itemize}
\vfill
\begin{center}
\begin{tikzpicture}[scale = 2.5]
\draw[dashed] (0,0) circle(1);
\fill[color = black] (0, 0) circle[radius=0.05];
\draw[->] (0, 0) -- (1.2, 0);
\fill[color = oblue] (1, 0) circle[radius=0.05];
\node[below right] at (1, 0) {$\ket{0}$};
\draw[->] (0, 0) -- (0, 1.2);
\fill[color = oblue] (0, 1) circle[radius=0.05];
\node[above left] at (0, 1) {$\ket{1}$};
\end{tikzpicture}
\end{center}
\vfill
\vfill
\pagebreak
\section{Operations on One Qubit}
We may apply transformations to qubits just as we apply transformations to probabilistic bits.
Again, we'll represent transformations as $2 \times 2$ matrices, since we want to map
one qubit state to another. \par
\note{In other words, we want to map elements of $\mathbb{R}^2$ to elements of $\mathbb{R}^2$.} \par
We will call such maps \textit{quantum gates,} since they are the quantum equivalent of classical logic gates.
\vspace{2mm}
There are two conditions a valid quantum gate $G$ must satisfy:
\begin{itemize}[itemsep = 1mm]
\item For any valid state $\ket{\psi}$, $G\ket{\psi}$ is a valid state. \par
Namely, $G$ must preserve the length of any vector it is applied to. \par
Recall that the set of valid quantum states is the set of unit vectors in $\mathbb{R}^2$
\item Any quantum gate must be \textit{invertible}. \par
We'll skip this condition for now, and return to it later.
\end{itemize}
In short, a quantum gate is a linear map that maps the unit circle to itself. \par
There are only two kinds of linear maps that do this: reflections and rotations.
\problem{}
The $X$ gate is the quantum analog of the \texttt{not} gate, defined by the following table:
\begin{itemize}
\item $X\ket{0} = \ket{1}$
\item $X\ket{1} = \ket{0}$
\end{itemize}
Find the matrix $X$.
\begin{solution}
\begin{equation*}
\begin{bmatrix}
0 & 1 \\ 1 & 0
\end{bmatrix}
\end{equation*}
\end{solution}
\vfill
\problem{}
What is $X\ket{+}$ and $X\ket{-}$? \par
\hint{Remember that all matrices are linear maps. What does this mean?}
\begin{solution}
$X\ket{+} = \ket{+}$ and $X\ket{-} = -\ket{-}$ (that is, negative ket-minus). \par
Most notably, remember that $G(a\ket{0} + b\ket{1}) = aG\ket{0} + bG\ket{1}$
\end{solution}
\vfill
\problem{}
In terms of geometric transformations, what does $X$ do to the unit circle?
\begin{solution}
It is a reflection about the $45^\circ$ axis.
\end{solution}
\vfill
\pagebreak
\problem{}
Let $Z$ be a quantum gate defined by the following table: \par
\begin{itemize}
\item $Z\ket{0} = \ket{0}$,
\item $Z\ket{1} = -\ket{1}$.
\end{itemize}
What is the matrix $Z$? What are $Z\ket{+}$ and $Z\ket{-}$? \par
What is $Z$ as a geometric transformation?
\vfill
\problem{}
Is the map $B$ defined by the table below a valid quantum gate?
\begin{itemize}
\item $B\ket{0} = \ket{0}$
\item $B\ket{1} = \ket{+}$
\end{itemize}
\hint{Find a $\ket{\psi}$ so that $B\ket{\psi}$ is not a valid qubit state}
\begin{solution}
$B\ket{+} = \frac{1 + \sqrt{2}}{2}\ket{0} + \frac{1}{2}\ket{1}$, which has a non-unit length of $\frac{\sqrt{2} + 1}{\sqrt{2}}$.
\end{solution}
\vfill
\problem{Rotation}
As we noted earlier, any rotation about the center is a valid quantum gate. \par
Let's derive all transformations of this form.
\begin{itemize}[itemsep = 1mm]
\item Let $U_\phi$ be the matrix that represents a counterclockwise rotation of $\phi$ degrees. \par
What is $U\ket{0}$ and $U\ket{1}$?
\item Find the matrix $U_\phi$ for an arbitrary $\phi$.
\end{itemize}
\vfill
\problem{}
Say we have a qubit that is either $\ket{+}$ or $\ket{-}$. We do not know which of the two states it is in. \par
Using one operation and one measurement, how can we find out, for certain, which qubit we received? \par
\vfill
\pagebreak

View File

@ -0,0 +1,145 @@
\section{Two Qubits}
\definition{}
Just as before, we'll represent multi-qubit states as linear combinations of multi-qubit basis states. \par
For example, a two-qubit state $\ket{ab}$ is the four-dimensional unit vector
\begin{equation}
\begin{bmatrix}
a \\ b \\ c \\ d
\end{bmatrix}
= a \ket{00} + b\ket{01} + c\ket{10} + d\ket{11}
\end{equation}
As always, multi-qubit states are unit vectors. \par
Thus, $a^2 + b^2 + c^2 + d^2 = 1$ in the two-bit case above.
\problem{}
Say we have two qubits $\ket{\psi}$ and $\ket{\varphi}$. \par
Show that $\ket{\psi} \otimes \ket{\varphi}$ is always a unit vector (and is thus a valid quantum state).
\vfill
\definition{Measurement II}<measureii>
Measurement of a two-qubit state works just like measurement of a one-qubit state: \par
If we measure $a\ket{00} + b\ket{01} + c\ket{10} + d\ket{11}$, \par
we get one of the four basis states with the following probabilities:
\begin{itemize}
\item $\mathcal{P}(\ket{00}) = a^2$
\item $\mathcal{P}(\ket{01}) = b^2$
\item $\mathcal{P}(\ket{10}) = c^2$
\item $\mathcal{P}(\ket{11}) = d^2$
\end{itemize}
As before, the sum of all the above probabilities is $1$.
\problem{}
Consider the two-qubit state
$\ket{\psi} = \frac{1}{\sqrt{2}} \ket{00} + \frac{1}{2} \ket{01} + \frac{\sqrt{3}}{4} \ket{10} + \frac{1}{4} \ket{11}$
\begin{itemize}[itemsep=2mm]
\item If we measure both bits of $\ket{\psi}$ simultaneously, \par
what is the probability of getting each of $\ket{00}$, $\ket{01}$, $\ket{10}$, and $\ket{11}$?
\item If we measure the ONLY the first qubit, what is the probability we get $\ket{0}$? How about $\ket{1}$? \par
\hint{There are two basis states in which the first qubit is $\ket{0}$.}
\item Say we measured the second bit and read $\ket{1}$. \par
If we now measure the first bit, what is the probability of getting $\ket{0}$?
\end{itemize}
\vfill
\pagebreak
\problem{}
Again, consider the two-qubit state
$\ket{\psi} = \frac{1}{\sqrt{2}} \ket{00} + \frac{1}{2} \ket{01} + \frac{\sqrt{3}}{4} \ket{10} + \frac{1}{4} \ket{11}$ \par
If we measure the first qubit of $\ket{\psi}$ and get $\ket{0}$, what is the resulting state of $\ket{\psi}$? \par
What would the state be if we'd measured $\ket{1}$ instead?
\vfill
\problem{}
Consider the three-qubit state $\ket{\psi} = c_0\ket{000} + c_1\ket{001} + ... + c_7 \ket{111}$. \par
Say we measure the first two qubits and get $\ket{00}$. What is the resulting state of $\ket{\psi}$?
\begin{solution}
We measure $\ket{00}$ with probability $c_0^2 + c_1^2$, and $\ket{\psi}$ collapses to
\begin{equation*}
\frac{c_0\ket{000} + c_1\ket{001}}{\sqrt{c_0^2 + c_1^2}}
\end{equation*}
\end{solution}
\vfill
\pagebreak
\definition{Entanglement}
Some product states can be factored into a tensor product of individual qubit states. For example,
\begin{equation*}
\frac{1}{2} \bigl(\ket{00} + \ket{01} + \ket{10} + \ket{11}\bigr)
= \frac{1}{\sqrt{2}}\bigl( \ket{0} + \ket{1} \bigr) \otimes
\frac{1}{\sqrt{2}}\bigl( \ket{0} + \ket{1} \bigr)
\end{equation*}
Such states are called \textit{product states.} States that aren't product states are called \textit{entangled} states.
\problem{}
Factor the following product state:
\begin{equation*}
\frac{1}{2\sqrt{2}} \bigl(\sqrt{3}\ket{00} - \sqrt{3}\ket{01} + \ket{10} - \ket{11}\bigr)
\end{equation*}
\begin{solution}
\begin{equation*}
\frac{1}{2\sqrt{2}} \biggl(\sqrt{3}\ket{00} - \sqrt{3}\ket{01} + \ket{10} - \ket{11}\biggr)
= \biggl( \frac{\sqrt{3}}{2}\ket{0} + \frac{1}{2}\ket{1} \biggr) \otimes
\biggl(\frac{1}{\sqrt{2}}\ket{0} - \frac{1}{\sqrt{2}}\ket{1} \biggr)
\end{equation*}
\end{solution}
\vfill
\problem{}
Show that the following is an entangled state.
\begin{equation*}
\frac{1}{\sqrt{2}}\ket{00} + \frac{1}{\sqrt{2}}\ket{11}
\end{equation*}
\begin{solution}
$
\left[
\begin{smallmatrix}
a_0 \\ a_1
\end{smallmatrix}
\right]
\otimes
\left[
\begin{smallmatrix}
b_0 \\ b_1
\end{smallmatrix}
\right]
=
a_0b_0\ket{00} + a_0b_1\ket{01} + a_1b_0\ket{10} + a_1b_1\ket{11}
$
\vspace{2mm}
So, we have that $a_1b_1 = a_0b_0 = \sqrt{2}^{-1}$ \par
But $a_0b_1 = a_1b_0 = 0$, so one of $a_0$ and $b_1$ must be zero. \par
We thus have a contradiction.
\end{solution}
\vfill
\pagebreak

View File

@ -0,0 +1,312 @@
\section{Logic Gates}
\definition{Matrices}
Throughout this handout, we've been using matrices. Again, recall that every linear map may be written as a matrix,
and that every matrix represents a linear map. For example, if $f: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear
map, we can write it as follows:
\begin{equation*}
f\left(
\ket{x}
\right)
=
\begin{bmatrix}
m_1 & m_2 \\
m_3 & m_4
\end{bmatrix}
\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}
=
\left[
\begin{matrix}
m_1x_1 + m_2x_2 \\
m_3x_1 + m_4x_2
\end{matrix}
\right]
\end{equation*}
\definition{}
Before we discussing multi-qubit quantum gates, we need to review to classical logic. \par
Of course, a classical logic gate is a linear map from $\{0,1\}^m$ to $\{0,1\}^n$
\problem{}<notgatex>
The \texttt{not} gate is a map defined by the following table: \par
\begin{itemize}
\item $X\ket{0} = \ket{1}$
\item $X\ket{1} = \ket{0}$
\end{itemize}
Write the \texttt{not} gate as a matrix that operates on single-bit vector states. \par
That is, find a matrix $X$ so that
$
X\left[\begin{smallmatrix} 1 \\ 0 \end{smallmatrix}\right]
= \left[\begin{smallmatrix} 0 \\ 1 \end{smallmatrix}\right]
$
and
$
X\left[\begin{smallmatrix} 0 \\ 1 \end{smallmatrix}\right]
= \left[\begin{smallmatrix} 1 \\ 0 \end{smallmatrix}\right]
$ \par
\begin{solution}
\begin{equation*}
X = \begin{bmatrix}
0 & 1 \\ 1 & 0
\end{bmatrix}
\end{equation*}
\end{solution}
\vfill
\problem{}
The \texttt{and} gate is a map $\mathbb{B}^2 \to \mathbb{B}$ defined by the following table:
\begin{center}
\begin{tabular}{ c | c | c }
\hline
\texttt{a} & \texttt{b} & \texttt{a} and \texttt{b} \\
\hline
0 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 1 & 1
\end{tabular}
\end{center}
Find a matrix $A$ so that $A\ket{\texttt{ab}}$ works as expected. \par
\hint{Remember, we write bits as vectors.}
\begin{solution}
\begin{equation*}
A = \begin{bmatrix}
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\end{equation*}
\begin{instructornote}
Because of the way we represent bits here, we also have the following property: \par
The columns of $A$ correspond to the output for each input---i.e, $A$ is just a table of outputs. \par
\vspace{2mm}
For example, if we look at the first column of $A$ (which is $[1, 0]$), we see: \par
$A\ket{00} = A[1,0,0,0] = [1,0] = \ket{0}$
\vspace{2mm}
Also with the last column (which is $[0,1]$): \par
$A\ket{00} = A[0,0,0,1] = [0,1] = \ket{1}$
\end{instructornote}
\end{solution}
\vfill
\pagebreak
\generic{Remark:}
The way a quantum circuit handles information is a bit different than the way a classical circuit does.
We usually think of logic gates as \textit{functions}: they consume one set of bits, and return another:
\begin{center}
\begin{tikzpicture}[circuit logic US, scale=2]
\node[and gate] (and) at (0,-0.8) {\tiny\texttt{and}};
\draw[->] ([shift={(-0.5, 0)}] and.input 1) node[left] {\texttt{input A}} -- ([shift={(-0.25, 0)}]and.input 1);
\draw[->] ([shift={(-0.5, 0)}] and.input 2) node[left] {\texttt{input B}} -- ([shift={(-0.25, 0)}]and.input 2);
\draw ([shift={(-0.25, 0)}] and.input 1) -- (and.input 1);
\draw ([shift={(-0.25, 0)}] and.input 2) -- (and.input 2);
\draw[->] (and.output) -- ([shift={(0.5, 0)}] and.output) node[right] {\texttt{output}};
\end{tikzpicture}
\end{center}
This model, however, won't work for quantum logic. If we want to understand quantum gates, we need to see them
not as \textit{functions}, but as \textit{transformations}. This distinction is subtle, but significant:
\begin{itemize}
\item functions \textit{consume} a set of inputs and \textit{produce} a set of outputs
\item transformations \textit{change} a set of objects, without adding or removing any elements
\end{itemize}
\vspace{2mm}
Our usual logic circuit notation models logic gates as functions---we thus can't use it. \par
We'll need a different diagram to draw quantum circuits. \par
\vfill
First, we'll need a set of bits. For this example, we'll use two, drawn in a vertical array. \par
We'll also add a horizontal time axis, moving from left to right:
\begin{center}
\begin{tikzpicture}[scale=1]
\node[qubit] (a) at (0, 0) {\texttt{0}};
\node[qubit] (b) at (0, -1) {\texttt{1}};
\draw[wire] (a) -- ([shift={(4, 0)}] a.center) node[qubit] {\texttt{0}};
\draw[wire] (b) -- ([shift={(4, 0)}] b.center) node[qubit] {\texttt{1}};
\draw[
color = oblue,
->>,
line width = 0.5mm
] (-1,-1.5) -- (5, -1.5);
\node[fill=white, text=oblue] at (2, -1.5) {\texttt{time axis}};
\node[left, gray] at (-1, -0.5) {State of each bit at start};
\node[right, gray] at (5, -0.5) {State of each bit at end};
\draw[
->,
color = gray,
line width = 0.2mm,
rounded corners = 2mm
]
(-1, -0.5) -- (-0.8, -0.5) -- (-0.8, 0) --(a)
;
\draw[
->,
color = gray,
line width = 0.2mm,
rounded corners = 2mm
]
(-1, -0.5) -- (-0.8, -0.5) -- (-0.8, -1) -- (b)
;
\draw[
<-,
color = gray,
line width = 0.2mm,
rounded corners = 2mm
]
(4.2, 0) -- (4.8, 0) -- (4.8, -0.5) -- (5, -0.5)
;
\draw[
<-,
color = gray,
line width = 0.2mm,
rounded corners = 2mm
]
(4.2, -1) -- (4.8, -1) -- (4.8, -0.5) -- (5, -0.5)
;
\end{tikzpicture}
\end{center}
In the diagram above, we didn't change our bits---so the labels at the start match those at the end.
\vfill
Thus, our circuit forms a grid, with bits ordered vertically and time horizontally. \par
If we want to change our state, we draw transformations as vertical boxes. \par
Every column represents a single transformation on the entire state:
\begin{center}
\begin{tikzpicture}[scale=1]
\node[qubit] (a) at (0, 0) {\texttt{1}};
\node[qubit] (b) at (0, -1) {\texttt{0}};
\draw[wire] (a) -- ([shift={(5, 0)}] a.center) node[qubit] {\texttt{0}};
\draw[wire] (b) -- ([shift={(5, 0)}] b.center) node[qubit] {\texttt{1}};
\ghostqubox{a}{1}{b}{2}{$T_1$}
\ghostqubox{a}{2}{b}{3}{$T_2$}
\ghostqubox{a}{3}{b}{4}{$T_3$}
\end{tikzpicture}
\end{center}
Note that the transformations above span the whole state. This is important: \par
we cannot apply transformations to individual bits---we always transform the \textit{entire} state.
\vfill
\pagebreak
\generic{Setup:}
Say we want to invert the first bit of a two-bit state. That is, we want a transformation $T$ so that \par
\begin{center}
\begin{tikzpicture}[scale=0.8]
\node[qubit] (a) at (0, 0) {\texttt{a}};
\node[qubit] (b) at (0, -1) {\texttt{b}};
\draw[wire] (a) -- ([shift={(4, 0)}] a.center) node[qubit] {\texttt{not a}};
\draw[wire] (b) -- ([shift={(4, 0)}] b.center) node[qubit] {\texttt{b}};
\qubox{a}{1.5}{b}{2.5}{$T$}
\end{tikzpicture}
\end{center}
In other words, we want a matrix $T$ satisfying the following equalities:
\begin{itemize}
\item $T\ket{00} = \ket{10}$
\item $T\ket{01} = \ket{11}$
\item $T\ket{10} = \ket{00}$
\item $T\ket{11} = \ket{01}$
\end{itemize}
\problem{}
Find the matrix that corresponds to the above transformation. \par
\hint{
Remember that
$\ket{0} = \left[\begin{smallmatrix} 1 \\ 0 \end{smallmatrix}\right]$ and
$\ket{1} = \left[\begin{smallmatrix} 0 \\ 1 \end{smallmatrix}\right]$ \\
Also, we found earlier that $X = \left[\begin{smallmatrix} 0 && 1 \\ 1 && 0 \end{smallmatrix}\right]$,
and of course $I = \left[\begin{smallmatrix} 1 && 0 \\ 0 && 1 \end{smallmatrix}\right]$.
}
\begin{solution}
\begin{equation*}
T = \begin{bmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
\end{bmatrix}
\end{equation*}
\end{solution}
\vfill
\generic{Remark:}
We could draw the above transformation as a combination $X$ and $I$ (identity) gate:
\begin{center}
\begin{tikzpicture}[scale=0.8]
\node[qubit] (a) at (0, 0) {$\ket{0}$};
\node[qubit] (b) at (0, -1) {$\ket{0}$};
\draw[wire] (a) -- ([shift={(3, 0)}] a.center) node[qubit] {$\ket{1}$};
\draw[wire] (b) -- ([shift={(3, 0)}] b.center) node[qubit] {$\ket{0}$};
\qubox{a}{1}{a}{2}{$X$}
\qubox{b}{1}{b}{2}{$I$}
\end{tikzpicture}
\end{center}
We can even omit the $I$ gate, since we now know that transformations affect the whole state: \par
\begin{center}
\begin{tikzpicture}[scale=0.8]
\node[qubit] (a) at (0, 0) {$\ket{0}$};
\node[qubit] (b) at (0, -1) {$\ket{0}$};
\draw[wire] (a) -- ([shift={(3, 0)}] a.center) node[qubit] {$\ket{1}$};
\draw[wire] (b) -- ([shift={(3, 0)}] b.center) node[qubit] {$\ket{0}$};
\qubox{a}{1}{a}{2}{$X$}
\end{tikzpicture}
\end{center}
We're now done: this is how we draw quantum circuits.
Don't forget that transformations \textit{always} affect the whole state---even if our diagram doesn't explicitly state this.
\pagebreak
% TODO:
% distributive property of tensor product
% quantum gate algebra

View File

@ -0,0 +1,217 @@
\section{Quantum Gates}
In the previous section, we stated that a quantum gate is a linear map. \par
Let's complete that definition.
\definition{}
A quantum gate is a \textit{orthonormal matrix}, which means any gate $G$
satisfies $GG^\text{T} = I$. \par
This implies the following: \par
\begin{itemize}
\item $G$ is square. In other words, it has as many rows as it has columns. \par
\note{
If we think of $G$ as a map, this means that $G$ has as many inputs as it has outputs. \\
This is to be expected: we stated earlier that quantum gates do not destroy or create qubits.
}
\item $G$ preserves lengths; i.e $|x| = |Gx|$. \par
\note{This ensures that $G\ket{\psi}$ is always a valid state.}
\end{itemize}
(You will prove all these properties in any introductory linear algebra course. \\
This isn't a lesson on linear algebra, so you may take them as given today.)
\generic{Remark:}
Let $G$ be a quantum gate. \par
Since quantum gates are, by definition, \textit{linear} maps,
the following holds: \par
\begin{equation*}
G\bigl(a_0 \ket{0} + a_1\ket{1}\bigr) = a_0G\ket{0} + a_1G\ket{1}
\end{equation*}
\problem{}<cnot>
Consider the \textit{controlled not} (or \textit{cnot}) gate, defined by the following table: \par
\begin{itemize}
\item $\text{X}_\text{c}\ket{00} = \ket{00}$
\item $\text{X}_\text{c}\ket{01} = \ket{01}$
\item $\text{X}_\text{c}\ket{10} = \ket{11}$
\item $\text{X}_\text{c}\ket{11} = \ket{10}$
\end{itemize}
In other words, the cnot gate inverts its second bit if its first bit is $\ket{1}$. \par
Find the matrix that applies the cnot gate.
\begin{solution}
\begin{equation*}
\text{X}_\text{c} = \left[\begin{smallmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
\end{smallmatrix}\right]
\end{equation*}
\vspace{4mm}
If $\ket{a}$ is $\ket{0}$, $\ket{a} \otimes \ket{b}$ is
$
\left[
\begin{smallmatrix}
\left[
\begin{smallmatrix}
b_1 \\ b_2
\end{smallmatrix}
\right]
\\ 0 \\ 0
\end{smallmatrix}
\right]
$, and the \say{not} portion of the matrix is ignored.
\vspace{4mm}
If $\ket{a}$ is $\ket{1}$, $\ket{a} \otimes \ket{b}$ is
$
\left[
\begin{smallmatrix}
0 \\ 0 \\
\left[
\begin{smallmatrix}
b_1 \\ b_2
\end{smallmatrix}
\right]
\end{smallmatrix}
\right]
$, and the \say{identity} portion of the matrix is ignored.
The state of $\ket{a}$ is always preserved, since it's determined by the position of
$\left[\begin{smallmatrix}b_1 \\ b_2\end{smallmatrix}\right]$ in the tensor product.
If $\left[\begin{smallmatrix}b_1 \\ b_2\end{smallmatrix}\right]$ is on top, $\ket{a}$ is $\ket{0}$,
and if $\left[\begin{smallmatrix}b_1 \\ b_2\end{smallmatrix}\right]$ is on the bottom, $\ket{a}$ is $\ket{1}$.
\end{solution}
\vfill
\pagebreak
\problem{}<applycnot>
Evaluate the following:
\begin{equation*}
\text{X}_\text{C}
\Bigl(
\frac{1}{2}\ket{00} +
\frac{1}{2}\ket{01} -
\frac{1}{2}\ket{10} -
\frac{1}{2}\ket{11}
\Bigr)
\end{equation*}
\vfill
\problem{}
If we measure the result of \ref{applycnot}, what are the probabilities of getting each state?
\vfill
\problem{}<cnotflipped>
Finally, modify the original cnot gate so that the roles of its bits are reversed: \par
$\text{X}_\text{c, flipped} \ket{ab}$ should invert $\ket{a}$ iff $\ket{b}$ is $\ket{1}$.
\begin{solution}
\begin{equation*}
\text{X}_\text{c, flipped} = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
\end{bmatrix}
\end{equation*}
\end{solution}
\vfill
\pagebreak
\definition{}
The \textit{Hadamard Gate} is given by the following matrix: \par
\begin{equation*}
H = \frac{1}{\sqrt{2}}\begin{bmatrix}
1 & 1 \\
1 & -1
\end{bmatrix}
\end{equation*}
\note{Note that we divide by $\sqrt{2}$, since $H$ must be orthonormal.}
\begin{ORMCbox}{Review: Matrix Multiplication}{black!10!white}{black!65!white}
Matrix multiplication works as follows:
\begin{equation*}
AB =
\begin{bmatrix}
1 & 2 \\
3 & 4 \\
\end{bmatrix}
\begin{bmatrix}
a_0 & b_0 \\
a_1 & b_1 \\
\end{bmatrix}
=
\begin{bmatrix}
1a_0 + 2a_1 & 1b_0 + 2b_1 \\
3a_0 + 4a_1 & 3b_0 + 4b_1 \\
\end{bmatrix}
\end{equation*}
Note that this is very similar to multiplying each column of $B$ by $A$. \par
The product $AB$ is simply $Ac$ for every column $c$ in $B$:
\begin{equation*}
Ac_0 =
\begin{bmatrix}
1 & 2 \\
3 & 4 \\
\end{bmatrix}
\begin{bmatrix}
a_0 \\ a_1
\end{bmatrix}
=
\begin{bmatrix}
1a_0 + 2a_1 \\
3a_0 + 4a_1
\end{bmatrix}
\end{equation*}
This is exactly the first column of the matrix product. \par
Also, note that each element of $Ac_0$ is the dot product of a row in $A$ and a column in $c_0$.
\end{ORMCbox}
\problem{}
What is $HH$? \par
Using this result, find $H^{-1}$.
\begin{solution}
$HH = I$, so $H^{-1} = H$
\end{solution}
\vfill
\problem{}
What geometric transformation does $H$ apply to the unit circle? \par
\hint{Rotation or reflection? How much, or about which axis?}
\vfill
\pagebreak

View File

@ -0,0 +1,421 @@
\section{HXH}
Let's return to the quantum circuit diagrams we discussed a few pages ago. \par
Keep in mind that we're working with quantum gates and proper half-qubits---not classical bits, as we were before.
\definition{Controlled Inputs}
A \textit{control input} or \textit{inverted control input} may be attached to any gate. \par
These are drawn as filled and empty circles in our circuit diagrams:
\null\hfill
\begin{minipage}{0.48\textwidth}
\begin{center}
\begin{tikzpicture}[scale=0.8]
\node[qubit] (a) at (0, 0) {$\ket{0}$};
\node[qubit] (b) at (0, -1) {$\ket{0}$};
\draw[wire] (a) -- ([shift={(3, 0)}] a.center) node[qubit] {$\ket{0}$};
\draw[wire] (b) -- ([shift={(3, 0)}] b.center) node[qubit] {$\ket{0}$};
\draw[wire]
($([shift={(1,0)}] a)!0.5!([shift={(2,0)}] a)$) --
($([shift={(1,0)}] b)!0.5!([shift={(2,0)}] b)$)
;
\draw[wirejoin]
($([shift={(1,0)}] b)!0.5!([shift={(2,0)}] b)$)
circle[radius=0.1] coordinate(dot)
;
\qubox{a}{1}{a}{2}{$X$}
\node[gray] at ($([shift={(0,-0.75)}] dot)$) {Non-inverted control input};
\end{tikzpicture}
\end{center}
\end{minipage}
\hfill
\begin{minipage}{0.48\textwidth}
\begin{center}
\begin{tikzpicture}[scale=0.8]
\node[qubit] (a) at (0, 0) {$\ket{0}$};
\node[qubit] (b) at (0, -1) {$\ket{0}$};
\draw[wire] (a) -- ([shift={(3, 0)}] a.center) node[qubit] {$\ket{1}$};
\draw[wire] (b) -- ([shift={(3, 0)}] b.center) node[qubit] {$\ket{0}$};
\draw[wire]
($([shift={(1,0)}] a)!0.5!([shift={(2,0)}] a)$) --
($([shift={(1,0)}] b)!0.5!([shift={(2,0)}] b)$)
;
\draw[wireijoin]
($([shift={(1,0)}] b)!0.5!([shift={(2,0)}] b)$)
circle[radius=0.1] coordinate(dot)
;
\qubox{a}{1}{a}{2}{$X$}
\node[gray] at ($([shift={(0,-0.75)}] dot)$) {Inverted control input};
\end{tikzpicture}
\end{center}
\end{minipage}
\hfill\null
\vspace{2mm}
An $X$ gate with a (non-inverted) control input behaves like an $X$ gate if \textit{all} its control inputs are $\ket{1}$,
and like $I$ otherwise. An $X$ gate with an inverted control inputs does the opposite, behaving like $I$ if its input is $\ket{1}$
and like $X$ otherwise. The two circuits above illustrate this fact---take a look at their inputs and outputs.
\vspace{2mm}
Of course, we can give a gate multiple controls. \par
An $X$ gate with multiple controls behaves like an $X$ gate if...
\begin{itemize}
\item all non-inverted controls are $\ket{1}$, and
\item all inverted controls are $\ket{0}$
\end{itemize}
...and like $I$ otherwise.
\problem{}
What are the final states of the qubits in the diagram below?
\begin{center}
\begin{tikzpicture}[scale = 1.0]
\node[qubit] (a) at (0, 0) {$\ket{1}$};
\node[qubit] (b) at (0, -1) {$\ket{0}$};
\node[qubit] (c) at (0, -2) {$\ket{1}$};
\node[qubit] (d) at (0, -3) {$\ket{0}$};
\draw[wire] (a) -- ([shift={(3, 0)}] a.center) node[qubit] {?};
\draw[wire] (b) -- ([shift={(3, 0)}] b.center) node[qubit] {?};
\draw[wire] (c) -- ([shift={(3, 0)}] c.center) node[qubit] {?};
\draw[wire] (d) -- ([shift={(3, 0)}] d.center) node[qubit] {?};
\draw[wire]
($([shift={(1,0)}] a)!0.5!([shift={(2,0)}] a)$) --
($([shift={(1,0)}] d)!0.5!([shift={(2,0)}] d)$)
;
\draw[wirejoin]
($([shift={(1,0)}] a)!0.5!([shift={(2,0)}] a)$)
circle[radius=0.1] coordinate(dot)
;
\draw[wireijoin]
($([shift={(1,0)}] c)!0.5!([shift={(2,0)}] c)$)
circle[radius=0.1] coordinate(dot)
;
\draw[wirejoin]
($([shift={(1,0)}] d)!0.5!([shift={(2,0)}] d)$)
circle[radius=0.1] coordinate(dot)
;
\qubox{b}{1}{b}{2}{$X$}
\end{tikzpicture}
\end{center}
\vfill
\pagebreak
\problem{}
Consider the diagram below, with one controlled $X$ gate: \par
\note[Note]{The CNOT gate from \ref{cnot} is a controlled $X$ gate.}
\begin{center}
\begin{tikzpicture}[scale=0.8]
\node[qubit] (a) at (0, 0) {$\ket{a}$};
\node[qubit] (b) at (0, -1) {$\ket{b}$};
\draw[wire] (a) -- ([shift={(3, 0)}] a.center) node[qubit] {};
\draw[wire] (b) -- ([shift={(3, 0)}] b.center) node[qubit] {};
\draw[wire]
($([shift={(1,0)}] a)!0.5!([shift={(2,0)}] a)$) --
($([shift={(1,0)}] b)!0.5!([shift={(2,0)}] b)$)
;
\draw[wirejoin]
($([shift={(1,0)}] b)!0.5!([shift={(2,0)}] b)$)
circle[radius=0.1] coordinate(dot)
;
\qubox{a}{1}{a}{2}{$X$}
\end{tikzpicture}
\end{center}
Find a matrix $\text{X}_\text{c}$ that represents this gate, so that $\text{X}_\text{c}\ket{ab}$ works as expected.
\begin{solution}
\begin{equation*}
\text{X}_\text{c} = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{bmatrix}
\end{equation*}
Note that this is also the solution to \ref{cnotflipped}.
\end{solution}
\vfill
\problem{}
Now, evaluate the following. Remember that
$\ket{+} = \frac{1}{\sqrt{2}}\Bigl(\ket{0} + \ket{1}\Bigr)$ and
$\ket{-} = \frac{1}{\sqrt{2}}\Bigl(\ket{0} - \ket{1}\Bigr)$
\null\hfill
\begin{minipage}{0.48\textwidth}
\begin{center}
\begin{tikzpicture}[scale=0.8]
\node[qubit] (a) at (0, 0) {$\ket{0}$};
\node[qubit] (b) at (0, -1) {$\ket{1}$};
\draw[wire] (a) -- ([shift={(3, 0)}] a.center) node[qubit] {$\ket{a}$};
\draw[wire] (b) -- ([shift={(3, 0)}] b.center) node[qubit] {$\ket{b}$};
\draw[wire]
($([shift={(1,0)}] a)!0.5!([shift={(2,0)}] a)$) --
($([shift={(1,0)}] b)!0.5!([shift={(2,0)}] b)$)
;
\draw[wirejoin]
($([shift={(1,0)}] b)!0.5!([shift={(2,0)}] b)$)
circle[radius=0.1] coordinate(dot)
;
\qubox{a}{1}{a}{2}{$X$}
\end{tikzpicture}
\end{center}
\end{minipage}
\hfill
\begin{minipage}{0.48\textwidth}
\begin{center}
\begin{tikzpicture}[scale=0.8]
\node[qubit] (a) at (0, 0) {$\ket{0}$};
\node[qubit] (b) at (0, -1) {$\ket{+}$};
\draw[wire] (a) -- ([shift={(3, 0)}] a.center) node[qubit] {$\ket{a}$};
\draw[wire] (b) -- ([shift={(3, 0)}] b.center) node[qubit] {$\ket{b}$};
\draw[wire]
($([shift={(1,0)}] a)!0.5!([shift={(2,0)}] a)$) --
($([shift={(1,0)}] b)!0.5!([shift={(2,0)}] b)$)
;
\draw[wirejoin]
($([shift={(1,0)}] b)!0.5!([shift={(2,0)}] b)$)
circle[radius=0.1] coordinate(dot)
;
\qubox{a}{1}{a}{2}{$X$}
\end{tikzpicture}
\end{center}
\end{minipage}
\hfill\null
\vspace{5mm}
\null\hfill
\begin{minipage}{0.48\textwidth}
\begin{center}
\begin{tikzpicture}[scale=0.8]
\node[qubit] (a) at (0, 0) {$\ket{-}$};
\node[qubit] (b) at (0, -1) {$\ket{1}$};
\draw[wire] (a) -- ([shift={(3, 0)}] a.center) node[qubit] {$\ket{a}$};
\draw[wire] (b) -- ([shift={(3, 0)}] b.center) node[qubit] {$\ket{b}$};
\draw[wire]
($([shift={(1,0)}] a)!0.5!([shift={(2,0)}] a)$) --
($([shift={(1,0)}] b)!0.5!([shift={(2,0)}] b)$)
;
\draw[wirejoin]
($([shift={(1,0)}] b)!0.5!([shift={(2,0)}] b)$)
circle[radius=0.1] coordinate(dot)
;
\qubox{a}{1}{a}{2}{$X$}
\end{tikzpicture}
\end{center}
\end{minipage}
\hfill
\begin{minipage}{0.48\textwidth}
\begin{center}
\begin{tikzpicture}[scale=0.8]
\node[qubit] (a) at (0, 0) {$\ket{+}$};
\node[qubit] (b) at (0, -1) {$\ket{-}$};
\draw[wire] (a) -- ([shift={(3, 0)}] a.center) node[qubit] {$\ket{a}$};
\draw[wire] (b) -- ([shift={(3, 0)}] b.center) node[qubit] {$\ket{b}$};
\draw[wire]
($([shift={(1,0)}] a)!0.5!([shift={(2,0)}] a)$) --
($([shift={(1,0)}] b)!0.5!([shift={(2,0)}] b)$)
;
\draw[wirejoin]
($([shift={(1,0)}] b)!0.5!([shift={(2,0)}] b)$)
circle[radius=0.1] coordinate(dot)
;
\qubox{a}{1}{a}{2}{$X$}
\end{tikzpicture}
\end{center}
\end{minipage}
\hfill\null
\hint{
Note that some of these states are entangled. The circuit diagrams are a bit misleading:
we can't write an entangled state as two distinct qubits!
\vspace{2mm}
So, don't try to find $\ket{a}$ and $\ket{b}$. \par
Instead find $\ket{ab} = \psi_0\ket{00} + \psi_1\ket{01} + \psi_2\ket{10} + \psi_3\ket{11}$, and factor it into $\ket{a} \otimes \ket{b}$ if you can.
}
\begin{solution}
In all the below equations, let $\tau = \frac{1}{\sqrt{2}}$.
\begin{itemize}[itemsep = 1mm]
\item $
\text{X}_\text{c}\ket{01}
= \ket{11}
$
\item $
\text{X}_\text{c}\ket{0+}
= \tau\ket{00} + \tau\ket{11}
$ \note[Note]{This state is entangled!}
\item $
\text{X}_\text{c}\ket{-1}
= -\tau\ket{10} + \tau\ket{11}
= (-\ket{-}) \otimes \ket{1}
$
\item $
\text{X}_\text{c}\ket{+-}
= \frac{1}{2}(\ket{00} - \ket{01} + \ket{10} - \ket{11})
= \ket{+-}
$
\end{itemize}
\end{solution}
\vfill
\pagebreak
\generic{Remark:}
Now, consider the following circuit:
\begin{center}
\begin{tikzpicture}[scale=0.8]
\node[qubit] (a) at (0, 0) {$\ket{0}$};
\node[qubit] (b) at (0, -1) {$\ket{1}$};
\draw[wire] (a) -- ([shift={(5, 0)}] a.center) node[qubit] {$\ket{a}$};
\draw[wire] (b) -- ([shift={(5, 0)}] b.center) node[qubit] {$\ket{b}$};
\qubox{b}{1}{b}{2}{$H$}
\qubox{b}{3}{b}{4}{$H$}
\draw[wire]
($([shift={(2,0)}] a)!0.5!([shift={(3,0)}] a)$) --
($([shift={(2,0)}] b)!0.5!([shift={(3,0)}] b)$)
;
\draw[wirejoin]
($([shift={(2,0)}] b)!0.5!([shift={(3,0)}] b)$)
circle[radius=0.1] coordinate(dot)
;
\qubox{a}{2}{a}{3}{$X$}
\end{tikzpicture}
\end{center}
We already know that $H$ is its own inverse: $HH = I$. \par
Applying $H$ to a qubit twice does not change its state.
\note{
Recall that $H = \frac{1}{\sqrt{2}}\left[\begin{smallmatrix} 1 & 1 \\ 1 & -1 \end{smallmatrix}\right]$
}
\vspace{2mm}
So, we might expect that the two circuits below are equivalent: \par
After all, we $H$ the second bit, use it to control an $X$ gate, and then $H$ it back to its previous state.
\null\hfill
\begin{minipage}{0.48\textwidth}\begin{center}
\begin{tikzpicture}[scale=0.8]
\node[qubit] (a) at (0, 0) {$\ket{0}$};
\node[qubit] (b) at (0, -1) {$\ket{1}$};
\draw[wire] (a) -- ([shift={(5, 0)}] a.center) node[qubit] {$\ket{a}$};
\draw[wire] (b) -- ([shift={(5, 0)}] b.center) node[qubit] {$\ket{b}$};
\qubox{b}{1}{b}{2}{$H$}
\qubox{b}{3}{b}{4}{$H$}
\draw[wire]
($([shift={(2,0)}] a)!0.5!([shift={(3,0)}] a)$) --
($([shift={(2,0)}] b)!0.5!([shift={(3,0)}] b)$)
;
\draw[wirejoin]
($([shift={(2,0)}] b)!0.5!([shift={(3,0)}] b)$)
circle[radius=0.1] coordinate(dot)
;
\qubox{a}{2}{a}{3}{$X$}
\end{tikzpicture}
\end{center}\end{minipage}
\hfill
\begin{minipage}{0.48\textwidth}\begin{center}
\begin{tikzpicture}[scale=0.8]
\node[qubit] (a) at (0, 0) {$\ket{0}$};
\node[qubit] (b) at (0, -1) {$\ket{1}$};
\draw[wire] (a) -- ([shift={(5, 0)}] a.center) node[qubit] {$\ket{c}$};
\draw[wire] (b) -- ([shift={(5, 0)}] b.center) node[qubit] {$\ket{d}$};
\draw[wire]
($([shift={(2,0)}] a)!0.5!([shift={(3,0)}] a)$) --
($([shift={(2,0)}] b)!0.5!([shift={(3,0)}] b)$)
;
\draw[wirejoin]
($([shift={(2,0)}] b)!0.5!([shift={(3,0)}] b)$)
circle[radius=0.1] coordinate(dot)
;
\qubox{a}{2}{a}{3}{$X$}
\end{tikzpicture}
\end{center}\end{minipage}
\hfill\null
\vspace{2mm}
This, however, isn't the case: \par
If we compute the state $\ket{ab}$ in the left circuit, we get $[0.5, ~0.5, -0.5, ~0.5]$ (which is entangled), \par
but the state $\ket{cd}$ on the right is $\ket{11} = [0,0,0,1]$. \par
\note{This is easy to verify with a few matrix multiplications.}
\vspace{4mm}
How does this make sense? \par
Remember that a two-bit quantum state is \textit{not} equivalent to a pair of one-qubit quantum states.
We must treat a multi-qubit state as a single unit.
Recall that a two-bit state $\ket{ab}$ comes with four probabilities:
$\mathcal{P}(\texttt{00})$, $\mathcal{P}(\texttt{01})$, $\mathcal{P}(\texttt{10})$, and $\mathcal{P}(\texttt{11})$.
If we change the probabilities of only $\ket{a}$, \textit{all four of these change!}
\vfill
Because of this fact, \say{controlled gates} may not work as you expect. They may seem
to \say{read} their controlling qubit without affecting its state, but remember---a
controlled gate still affects the \textit{entire} state. As we noted before, it is
not possible to apply a transformation to one bit of a quantum state.
\begin{center}
\begin{tikzpicture}[scale=1]
\node[qubit] (a) at (0, 0) {\texttt{1}};
\node[qubit] (b) at (0, -1) {\texttt{0}};
\draw[wire] (a) -- ([shift={(5, 0)}] a.center) node[qubit] {\texttt{0}};
\draw[wire] (b) -- ([shift={(5, 0)}] b.center) node[qubit] {\texttt{1}};
\ghostqubox{a}{1}{b}{2}{$T_1$}
\ghostqubox{a}{2}{b}{3}{$T_2$}
\ghostqubox{a}{3}{b}{4}{$T_3$}
\end{tikzpicture}
\end{center}
\vfill
\pagebreak

View File

@ -0,0 +1,195 @@
\section{Superdense Coding}
Consider the following entangled two-qubit states, called the \textit{bell states}:
\begin{itemize}
\item $\ket{\Phi^+} = \frac{1}{\sqrt{2}}\ket{00} + \frac{1}{\sqrt{2}}\ket{11}$
\item $\ket{\Phi^-} = \frac{1}{\sqrt{2}}\ket{00} - \frac{1}{\sqrt{2}}\ket{11}$
\item $\ket{\Psi^+} = \frac{1}{\sqrt{2}}\ket{01} + \frac{1}{\sqrt{2}}\ket{10}$
\item $\ket{\Psi^-} = \frac{1}{\sqrt{2}}\ket{01} - \frac{1}{\sqrt{2}}\ket{10}$
\end{itemize}
\problem{}
The probabilistic bits we get when measuring any of the above may be called \textit{anticorrelated bits}. \par
If we measure the first bit of any of these states and observe $1$, what is the resulting compound state? \par
What if we observe $0$ instead? \par
Do you see why we can call these bits anticorrelated?
\vfill
\problem{}
Show that the bell states are orthogonal \par
\hint{Dot product}
\vfill
\problem{}<bellmeasure>
Say we have a pair of qubits in one of the four bell states. \par
How can we find out which of the four states we have, with certainty? \par
\hint{$H\ket{+} = \ket{0}$, and $H\ket{-} = \ket{1}$}
\begin{solution}
$X_\text{c}\ket{\Phi^+} = \ket{+0}$ and $(H \otimes I)\ket{+0} = \ket{00}$ \par
$X_\text{c}\ket{\Psi^+} = \ket{+1}$ and $(H \otimes I)\ket{+1} = \ket{01}$ \par
$X_\text{c}\ket{\Phi^-} = \ket{-0}$ and $(H \otimes I)\ket{-0} = \ket{10}$ \par
$X_\text{c}\ket{\Psi^-} = \ket{-1}$ and $(H \otimes I)\ket{-1} = \ket{11}$ \par
\end{solution}
\vfill
\pagebreak
\definition{}
The $Z$ gate is defined as follows: \par
\begin{equation*}
Z\begin{bmatrix}
\psi_0 \\ \psi_1
\end{bmatrix}
=
\begin{bmatrix}
\psi_0 \\ -\psi_1
\end{bmatrix}
\end{equation*}
\problem{}
Suppose that Alice and Bob are each in possession of one qubit. \par
These two qubits are entangled, and have the compound state $\ket{\Phi^+}$. \par
\note[Note]{We could say that they each have \say{half} of $\ket{\Phi^+}$.}
How can Alice send a two-bit classical state
(i.e, one of the four values \texttt{00}, \texttt{01}, \texttt{10}, \texttt{11}) \par
to Bob by only sending one qubit?
\begin{solution}
Alice can turn any bell state into any other by applying operations to her qubit. \par
Once she does so, Bob may use the procedure in \ref{bellmeasure} to read one of four states.
\null\hfill
\begin{minipage}{0.3\textwidth}
\begin{center}
\begin{tikzpicture}[scale = 1]
\node[qubit] (a) at (0, 0) {};
\node[qubit] (b) at (0, -1) {};
\draw[wire] (a) -- ([shift={(4, 0)}] a.center) node[qubit] {};
\draw[wire] (b) -- ([shift={(4, 0)}] b.center) node[qubit] {};
\node[right] at (0, -0.5) {$\ket{\Phi^+}$};
\node[left] at (4, -0.5) {$\ket{\Phi^-}$};
\qubox{a}{1.5}{a}{2.5}{$Z$}
\end{tikzpicture}
\end{center}
\end{minipage}
\hfill
\begin{minipage}{0.3\textwidth}
\begin{center}
\begin{tikzpicture}[scale = 1]
\node[qubit] (a) at (0, 0) {};
\node[qubit] (b) at (0, -1) {};
\draw[wire] (a) -- ([shift={(4, 0)}] a.center) node[qubit] {};
\draw[wire] (b) -- ([shift={(4, 0)}] b.center) node[qubit] {};
\node[right] at (0, -0.5) {$\ket{\Phi^+}$};
\node[left] at (4, -0.5) {$\ket{\Psi^+}$};
\qubox{a}{1.5}{a}{2.5}{$X$}
\end{tikzpicture}
\end{center}
\end{minipage}
\hfill
\begin{minipage}{0.3\textwidth}
\begin{center}
\begin{tikzpicture}[scale = 1]
\node[qubit] (a) at (0, 0) {};
\node[qubit] (b) at (0, -1) {};
\draw[wire] (a) -- ([shift={(4, 0)}] a.center) node[qubit] {};
\draw[wire] (b) -- ([shift={(4, 0)}] b.center) node[qubit] {};
\node[right] at (0, -0.5) {$\ket{\Phi^+}$};
\node[left] at (4, -0.5) {$\ket{\Psi^-}$};
\qubox{a}{1}{a}{2}{$X$}
\qubox{a}{2}{a}{3}{$Z$}
\end{tikzpicture}
\end{center}
\end{minipage}
\hfill\null
\vspace{4mm}
\linehack{}
The complete circuit is shown below. Double lines indicate classical bits.
\begin{center}
\begin{tikzpicture}[scale = 1]
\node[qubit] (a) at (0, 0) {$a$};
\node[qubit] (b) at (0, -1) {$b$};
\node[qubit] (c) at (0, -2) {$\ket{\Phi^+_\text{A}}$};
\node[qubit] (d) at (0, -3) {$\ket{\Phi^+_\text{B}}$};
\draw[wire, double] (a) -- ([shift={(9, 0)}] a.center) node[qubit] {};
\draw[wire, double] (b) -- ([shift={(9, 0)}] b.center) node[qubit] {};
\draw[wire] (c) -- ([shift={(7, 0)}] c.center) node[qubit] {};
\draw[wire] (d) -- ([shift={(7, 0)}] d.center) node[qubit] {};
\draw[wire, double]
([shift={(7, 0)}] c.center)
-- ([shift={(9, 0)}] c.center)
node[qubit] {$a$}
;
\draw[wire, double]
([shift={(7, 0)}] d.center)
-- ([shift={(9, 0)}] d.center)
node[qubit] {$b$}
;
\draw[wire, double]
($([shift={(1,0)}] b)!0.5!([shift={(2,0)}] b)$) --
($([shift={(1,0)}] c)!0.5!([shift={(2,0)}] c)$)
;
\draw[wirejoin]
($([shift={(1,0)}] b)!0.5!([shift={(2,0)}] b)$)
circle[radius=0.1] coordinate(dot)
;
\qubox{c}{1}{c}{2}{$X$}
\draw[wire, double]
($([shift={(2,0)}] a)!0.5!([shift={(3,0)}] a)$) --
($([shift={(2,0)}] c)!0.5!([shift={(3,0)}] c)$)
;
\draw[wirejoin]
($([shift={(2,0)}] a)!0.5!([shift={(3,0)}] a)$)
circle[radius=0.1] coordinate(dot)
;
\qubox{c}{2}{c}{3}{$Z$}
\draw[wire]
($([shift={(4,0)}] c)!0.5!([shift={(5,0)}] c)$) --
($([shift={(4,0)}] d)!0.5!([shift={(5,0)}] d)$)
;
\draw[wirejoin]
($([shift={(4,0)}] c)!0.5!([shift={(5,0)}] c)$)
circle[radius=0.1] coordinate(dot)
;
\qubox{d}{4}{d}{5}{$X$}
\qubox{c}{5}{c}{6}{$H$}
\qubox{c}{6.3}{c}{8}{measure}
\qubox{d}{6.3}{d}{8}{measure}
\end{tikzpicture}
\end{center}
\end{solution}
\vfill
\generic{Remark:}
Superdense coding consumes a pre-shared entangled pair to transmit two bits of information.
This entanglement may \textit{not} be re-used---it is destroyed when Bob measures the final qubit states.
\pagebreak

View File

@ -0,0 +1,179 @@
\section{Quantum Teleportation}
Superdense coding lets us convert quantum bandwidth into classical bandwidth. \par
Quantum teleportation does the opposite, using two classical bits and an entangled pair
to transmit a quantum state.
\generic{Setup:}
Again, suppose Alice and Bob each have half of a $\ket{\Phi^+}$ state. \par
We'll call the state Alice wants to teleport $\ket{\psi} = \psi_0\ket{0} + \psi_1\ket{1}$. \par
\problem{}
What is the three-qubit state $\ket{\psi}\ket{\Phi^+}$ in terms of $\psi_0$ and $\psi_1$?
\vfill
\problem{}
To teleport $\ket{\psi}$, Alice applies the following circuit to her two qubits, where $\ket{\Phi^+_\text{A}}$ is her half of $\ket{\Phi^+}$. \par
She then measures both qubits and sends the result to Bob.
\begin{center}
\begin{tikzpicture}[scale = 1]
\node[qubit] (a) at (0, 0) {$\ket{\Phi^+_\text{A}}$};
\node[qubit] (b) at (0, -1) {$\ket{\psi}$};
\draw[wire] (a) -- ([shift={(4, 0)}] a.center) node[qubit] {};
\draw[wire] (b) -- ([shift={(4, 0)}] b.center) node[qubit] {};
\draw[wire]
($([shift={(1,0)}] a)!0.5!([shift={(2,0)}] a)$) --
($([shift={(1,0)}] b)!0.5!([shift={(2,0)}] b)$)
;
\draw[wirejoin]
($([shift={(1,0)}] b)!0.5!([shift={(2,0)}] b)$)
circle[radius=0.1] coordinate(dot)
;
\qubox{b}{2}{b}{3}{$H$}
\qubox{a}{1}{a}{2}{$X$}
\end{tikzpicture}
\end{center}
What should Bob do so that $\ket{\Phi^+_B}$ takes the state $\ket{\psi}$ had initially?
\begin{solution}
\begin{itemize}
\item
If Bob receives \texttt{00}, he does nothing.
\item
If Bob receives \texttt{01}, he applies an $X$ gate to his qubit.
\item
If Bob receives \texttt{01}, he applies a $Z$ gate to his qubit.
\item
If Bob receives \texttt{11}, he applies $ZX$ to his qubit.
\end{itemize}
\linehack{}
The complete circuit is shown below. Double lines indicate classical bits.
\begin{center}
\begin{tikzpicture}[scale = 1]
\node[qubit] (a) at (0, -1) {$\ket{\Phi^+_\text{A}}$};
\node[qubit] (b) at (0, -2) {$\ket{\Phi^+_\text{B}}$};
\node[qubit] (c) at (0, 0) {$\ket{\psi}$};
\draw[wire] (a) -- ([shift={(5, 0)}] a.center) node[qubit] {};
\draw[wire] (b) -- ([shift={(9, 0)}] b.center) node[qubit] {$\ket{\psi}$};
\draw[wire] (c) -- ([shift={(5, 0)}] c.center) node[qubit] {};
\draw[wire, double]
([shift={(5, 0)}] a.center)
-- ([shift={(9, 0)}] a.center)
node[qubit] {}
;
\draw[wire, double]
([shift={(5, 0)}] c.center)
-- ([shift={(9, 0)}] c.center)
node[qubit] {}
;
\draw[wire]
($([shift={(1,0)}] a)!0.5!([shift={(2,0)}] a)$) --
($([shift={(1,0)}] c)!0.5!([shift={(2,0)}] c)$)
;
\draw[wirejoin]
($([shift={(1,0)}] c)!0.5!([shift={(2,0)}] c)$)
circle[radius=0.1] coordinate(dot)
;
\qubox{c}{2}{c}{3}{$H$}
\qubox{a}{1}{a}{2}{$X$}
\qubox{a}{3.8}{a}{5.5}{measure}
\qubox{c}{3.8}{c}{5.5}{measure}
\draw[wire, double]
($([shift={(6,0)}] a)!0.5!([shift={(7,0)}] a)$) --
($([shift={(6,0)}] b)!0.5!([shift={(7,0)}] b)$)
;
\draw[wirejoin]
($([shift={(6,0)}] a)!0.5!([shift={(7,0)}] a)$)
circle[radius=0.1] coordinate(dot)
;
\qubox{b}{6}{b}{7}{$X$}
\draw[wire, double]
($([shift={(7,0)}] b)!0.5!([shift={(8,0)}] b)$) --
($([shift={(7,0)}] c)!0.5!([shift={(8,0)}] c)$)
;
\draw[wirejoin]
($([shift={(7,0)}] c)!0.5!([shift={(8,0)}] c)$)
circle[radius=0.1] coordinate(dot)
;
\qubox{b}{7}{b}{8}{$Z$}
\end{tikzpicture}
\end{center}
Note how similar this is to the superdense coding circuit.
\end{solution}
\vfill
\pagebreak
\problem{}
With an informal proof, show that it is not possible to use superdense coding to send
more than two classical bits through an entangled two-qubit quantum state.
\begin{solution}
If superdense coding was any more efficient, we could repeatedly apply superdense coding and quantum teleportation,
to compress an arbitrary number of bits into two \say{seed} bits.
\linehack{}
\textbf{Even worse, this would allow faster-than-light communication:} \par
Because the seed message is only 4 bits, Alice has decent odds of just
guessing it. She'll guess wrong and trash the message the majority of the
time but, by using an error correcting code, she can tell whether or not
the guess was correct or she trashed the message. And by repeating the protocol
enough times, we can increase the odds of the message being received arbitrarily
close to certainty.
\note[Note]{
I'm implicitly assuming that if Alice uses the wrong seed, she gets a totally random message---or
at least a message that isn't guaranteed to follow the error correction scheme better than chance would.
The alternative, where Alice receives noise that's uncorrelated with the message and yet somehow satisfies
arbitrary error correction schemes, is waaay too magical for me to even consider.
}
\vspace{2mm}
Suppose Alice and Bob perform the iterated-ultradense-encode-and-guess process 100 times.
That gives a failure rate of $(\nicefrac{15}{16})^{100} \approx 0.5\%$.
Sure it's a hundred times more work than just sending the 4 bits, and less likely to succeed to boot,
but the new protocol \textit{doesn't require any bits to be physically transmitted}.
There's no signalling delay!
\vspace{2mm}
In fact, Alice could even perform the decoding process \textit{before} Bob did the encoding.
But we're already so far into \say{everything is clearly broken} territory that creating time travel paradoxes is overkill.
\vspace{5mm}
From \url{https://algassert.com/2016/05/29/ultra-dense-coding-allows-ftl.html}
\end{solution}
\vfill
\pagebreak

View File

@ -0,0 +1,79 @@
\usetikzlibrary{arrows.meta}
\usetikzlibrary{shapes.geometric}
\usetikzlibrary{calc}
\usetikzlibrary{circuits.logic.US}
\usetikzlibrary{plotmarks}
\tikzset{
gate/.style = {
draw,
rectangle,
fill = white,
line width = 0.35mm
},
qubit/.style = {
fill = \ORMCbgcolor,
line width = 0.35mm
},
wire/.style = {
line width = 1
},
wirejoin/.style = {
fill = oblue,
draw = oblue,
line width = 1.5
},
wireijoin/.style = {
fill = white,
draw = oblue,
line width = 1.5
},
}
% Macros
% Do NOT put a semicolon after qubox,
% it gives a "character ; not found" error.
% LaTeX is odd.
\def\qubox#1#2#3#4#5{
% 1: point ne
% 2: point ne x offset
% 3: point sw
% 4: point sw x offset
% 5: label text
\draw[
line width = 1,
fill = white,
draw = black
]
([shift={(#2 + 0.1, 0.4)}] #1.center)
-- ([shift={(#2 + 0.1, -0.4)}] #1.center |- #3.center)
-- ([shift={(#4 - 0.1, -0.4)}] #3.center)
-- ([shift={(#4 - 0.1, 0.4)}] #1.center -| #3.center)
-- cycle
;
\node at ($([shift={(#2,0)}] #1)!0.5!([shift={(#4,0)}] #3)$) {#5};
}
\def\ghostqubox#1#2#3#4#5{
% 1: point ne
% 2: point ne x offset
% 3: point sw
% 4: point sw x offset
% 5: label text
\draw[
line width = 1,
fill = white,
draw = gray,
dashed
]
([shift={(#2 + 0.1, 0.4)}] #1.center)
-- ([shift={(#2 + 0.1, -0.4)}] #1.center |- #3.center)
-- ([shift={(#4 - 0.1, -0.4)}] #3.center)
-- ([shift={(#4 - 0.1, 0.4)}] #1.center -| #3.center)
-- cycle
;
\node[gray] at ($([shift={(#2,0)}] #1)!0.5!([shift={(#4,0)}] #3)$) {#5};
}