Advanced handouts
Add missing file Co-authored-by: Mark <mark@betalupi.com> Co-committed-by: Mark <mark@betalupi.com>
This commit is contained in:
102
src/Advanced/Generating Functions/parts/02 dice.tex
Executable file
102
src/Advanced/Generating Functions/parts/02 dice.tex
Executable file
@@ -0,0 +1,102 @@
|
||||
\section{Dice}
|
||||
|
||||
\definition{}
|
||||
A \textit{die} is a device that randomly selects a positive integer from
|
||||
a finite list of options. For example, the standard 6-sided die selects a value from
|
||||
$[1,2,3,4,5,6]$. We may have many sides with the same value, as in $[1, 1, 2, 3]$.
|
||||
|
||||
To describe a die with a generating function, let $a_k$ be the number of times
|
||||
$k$ appears as a side of the die and consider $a_0 + a_1x + x_2x^2 + ... $. \par
|
||||
A die has a finite number of sides, so this will be a regular polynomial.
|
||||
|
||||
\problem{}
|
||||
What is the generating function of the standard 6-sided die?
|
||||
|
||||
\begin{solution}
|
||||
$x + x^2 + x^3 + x^4 + x^5 + x^6$
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
What is the generating function of the die with sides $[1, 2, 3, 5]$?
|
||||
|
||||
\begin{solution}
|
||||
$2x + x^2 + x^3 + x^5$
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Let $A(x)$ and $B(x)$ be the generating functions of two dice. \par
|
||||
What is the significance of $A(1)$?
|
||||
\begin{solution}
|
||||
$A(1) = $ the number of sides on the die
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Using formulas we found earlier, show that the $k^\text{th}$ coefficient
|
||||
of $A(x)B(x)$ is the number of ways to roll $k$ as the sum of the two dice.
|
||||
\begin{solution}
|
||||
The $k^\text{th}$ coefficient of $A(x)B(x)$ is...
|
||||
|
||||
\begin{align*}
|
||||
a_0b_k + a_1b_{k+1} + ... + a_kb_0 \\
|
||||
&=~ \text{count}(A = 0; B = k) + ... + \text{count}(A = k; B = 0) \\
|
||||
&=~ \text{number of ways} A + B = k
|
||||
\end{align*}
|
||||
\end{solution}
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\problem{}
|
||||
Find a generating function for the sequence $c_0, c_1, ...$, where $c_k$ is
|
||||
the probability that the sum of the two dice is $k$.
|
||||
\begin{solution}
|
||||
|
||||
\begin{equation*}
|
||||
c_k
|
||||
= \frac{\text{number of ways sum} = k}{\text{number of total outcomes}}
|
||||
= \frac{\text{number of ways sum} = k}{A(1)B(1)}
|
||||
\end{equation*}
|
||||
|
||||
So,
|
||||
|
||||
\begin{equation*}
|
||||
c_0 + c_1x + c_2x^2 =
|
||||
\frac{A(x)B(x)}{A(1)B(1)}
|
||||
\end{equation*}
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Using generating functions, find two six-sided dice whose sum has the same
|
||||
distribution as the sum of two standard six-sided dice? \par
|
||||
|
||||
That is, for any integer $k$, the number if ways that the sum of the two
|
||||
nonstandard dice rolls as $k$ is equal to the number of ways the sum of
|
||||
two standard dice rolls as $k$.
|
||||
\hint{factor polynomials.}
|
||||
\begin{solution}
|
||||
We need a different factorization of
|
||||
|
||||
\begin{equation*}
|
||||
(x + x^2 + x^3 + x^4 + x^5 + x^6)^2 = A(x)B(x)
|
||||
\end{equation*}
|
||||
|
||||
We can use
|
||||
|
||||
\begin{equation*}
|
||||
(x + 2x^2 + 2x^3 + x^4)
|
||||
(x + x^3 + x^4 + x^5 + x^6 + x^8)
|
||||
\end{equation*}
|
||||
\end{solution}
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
Reference in New Issue
Block a user