Advanced handouts
Add missing file Co-authored-by: Mark <mark@betalupi.com> Co-committed-by: Mark <mark@betalupi.com>
This commit is contained in:
57
src/Advanced/Definable Sets/parts/4 equivalence.tex
Normal file
57
src/Advanced/Definable Sets/parts/4 equivalence.tex
Normal file
@ -0,0 +1,57 @@
|
||||
\section{Equivalence}
|
||||
|
||||
\generic{Notation:}
|
||||
Let $S$ be a structure and $\varphi$ a formula. \par
|
||||
If $\varphi$ is true in $S$, we write $S \models \varphi$. \par
|
||||
This is read \say{$S$ satisfies $\varphi$}
|
||||
|
||||
\definition{}
|
||||
Let $S$ and $T$ be structures. \par
|
||||
We say $S$ and $T$ are \textit{equivalent} (and write $S \equiv T$) if for any formula $\varphi$, $S \models \varphi \Longleftrightarrow T \models \varphi$. \par
|
||||
If $S$ and $T$ are not equivalent, we write $S \not\equiv T$.
|
||||
|
||||
\problem{}
|
||||
Show that $
|
||||
\Bigl(\mathbb{Z} ~\big|~ \{ +, 0 \}\Bigr)
|
||||
\not\equiv
|
||||
\Bigl(\mathbb{R} ~\big|~ \{ +, 0 \}\Bigr)
|
||||
$
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Show that $
|
||||
\Bigl(\mathbb{Z} ~\big|~ \{ +, 0 \}\Bigr)
|
||||
\not\equiv
|
||||
\Bigl(\mathbb{N} ~\big|~ \{ +, 0 \}\Bigr)
|
||||
$
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Show that $
|
||||
\Bigl(\mathbb{R} ~\big|~ \{ +, 0 \}\Bigr)
|
||||
\not\equiv
|
||||
\Bigl(\mathbb{N} ~\big|~ \{ +, 0 \}\Bigr)
|
||||
$
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Show that $
|
||||
\Bigl(\mathbb{R} ~\big|~ \{ +, 0 \}\Bigr)
|
||||
\not\equiv
|
||||
\Bigl(\mathbb{Z}^2 ~\big|~ \{ +, 0 \}\Bigr)
|
||||
$
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Show that $
|
||||
\Bigl(\mathbb{Z} ~\big|~ \{ +, 0 \}\Bigr)
|
||||
\not\equiv
|
||||
\Bigl(\mathbb{Z}^2 ~\big|~ \{ +, 0 \}\Bigr)
|
||||
$
|
||||
|
||||
\begin{solution}
|
||||
All of the above are easy, but the last one can take a while. \par
|
||||
The trick is to notice that $\mathbb{Z}$ has two equivalence classes mod 2, while $\mathbb{Z}^2$ has four.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
Reference in New Issue
Block a user