Advanced handouts
Add missing file Co-authored-by: Mark <mark@betalupi.com> Co-committed-by: Mark <mark@betalupi.com>
This commit is contained in:
		
							
								
								
									
										174
									
								
								src/Advanced/Compression/parts/2 lzss.tex
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										174
									
								
								src/Advanced/Compression/parts/2 lzss.tex
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,174 @@
 | 
			
		||||
\section{LZ Codes}
 | 
			
		||||
 | 
			
		||||
The LZ-family\footnotemark{} of codes (LZ77, LZ78, LZSS, LZMA, and others) take advantage of repeated subsequences
 | 
			
		||||
in a string. They are the basis of most modern compression algorithms, including DEFLATE, which is used in the ZIP, PNG,
 | 
			
		||||
and GZIP formats.
 | 
			
		||||
 | 
			
		||||
\footnotetext{
 | 
			
		||||
	Named after Abraham Lempel and Jacob Ziv, the original inventors. \par
 | 
			
		||||
	LZ77 is the algorithm described in their first paper on the topic, which was published in 1977. \par
 | 
			
		||||
	LZ78, LZSS, and LZMA are minor variations on the same general idea.
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
\vspace{2mm}
 | 
			
		||||
 | 
			
		||||
The idea behind LZ is to represent repeated substrings as \textit{pointers} to previous parts of the string. \par
 | 
			
		||||
Pointers take the form \texttt{<pos, len>}, where \texttt{pos} is the position of the string to repeat and
 | 
			
		||||
\texttt{len} is the number of symbols to copy.
 | 
			
		||||
 | 
			
		||||
\vspace{2mm}
 | 
			
		||||
 | 
			
		||||
For example, we can encode the string \texttt{ABRACADABRA} as \texttt{[ABRACAD<7, 4>]}. \par
 | 
			
		||||
The pointer \texttt{<7, 4>} tells us to look back 7 positions (to the first \texttt{A}), and copy the next 4 symbols. \par
 | 
			
		||||
Note that pointers refer to the partially decoded output---\textit{not} to the encoded string. \par
 | 
			
		||||
This allows pointers to reference other pointers, and ensures that codes like \texttt{A<1,9>} are valid. \par
 | 
			
		||||
\note{For example, \texttt{[B<1,2>]} decodes to \texttt{BBB}.}
 | 
			
		||||
 | 
			
		||||
\problem{}
 | 
			
		||||
Encode \texttt{ABCD$\cdot$ABCD$\cdot$BABABA$\cdot$ABCD$\cdot$ABCD} using this scheme. \par
 | 
			
		||||
Then, decode the following:
 | 
			
		||||
\begin{itemize}
 | 
			
		||||
	\item \texttt{[ABCD<4,4>]}
 | 
			
		||||
	\item \texttt{[A<1,9>]}
 | 
			
		||||
	\item \texttt{[DAC<3,5>]}
 | 
			
		||||
\end{itemize}
 | 
			
		||||
 | 
			
		||||
\begin{solution}
 | 
			
		||||
 | 
			
		||||
	% spell:off
 | 
			
		||||
	\texttt{ABCD$\cdot$ABCD$\cdot$BABABA$\cdot$ABCD$\cdot$ABCD} becomes \texttt{[ABCD<4, 4> BA<2,4> ABCD<4,4>]}.
 | 
			
		||||
	% spell:on
 | 
			
		||||
 | 
			
		||||
	\linehack{}
 | 
			
		||||
 | 
			
		||||
	In parts two and three, remember that we're reading the \textit{output string.} \par
 | 
			
		||||
	The ten \texttt{A}s in part two are produced one by one, \par
 | 
			
		||||
	with the decoder's \say{read head} following its \say{write head.}
 | 
			
		||||
 | 
			
		||||
	\begin{itemize}
 | 
			
		||||
		\item \texttt{ABCD$\cdot$ABCD}
 | 
			
		||||
		\item \texttt{AAAAA$\cdot$AAAAA}
 | 
			
		||||
		\item \texttt{DACDACDA}
 | 
			
		||||
	\end{itemize}
 | 
			
		||||
\end{solution}
 | 
			
		||||
 | 
			
		||||
\vfill
 | 
			
		||||
 | 
			
		||||
\problem{}
 | 
			
		||||
Convince yourself that LZ is a generalization of the run-length code we discussed in the previous section.
 | 
			
		||||
\hint{\texttt{[A<1,9>]} and \texttt{[00-1001]} are the same thing!}
 | 
			
		||||
 | 
			
		||||
\remark{}
 | 
			
		||||
Note that we left a few things out of this section: we didn't discuss the algorithm that converts a string to an LZ-encoded blob,
 | 
			
		||||
nor did we discuss how we should represent strings encoded with LZ in binary. We skipped these details because they are
 | 
			
		||||
problems of implementation---they're the engineer's headache, not the mathematician's. \par
 | 
			
		||||
 | 
			
		||||
\pagebreak
 | 
			
		||||
 | 
			
		||||
%\begin{instructornote}
 | 
			
		||||
%	A simple LZ-scheme can work as follows. We encode our string into a sequence of
 | 
			
		||||
%	nine-bit blocks, drawn below. The first bit of each block tells us whether or not
 | 
			
		||||
%	this block is a pointer, and the next eight bits contain either a \texttt{pos, len} pair
 | 
			
		||||
%	(using, say, for bits for each number) or a plain eight-bit symbol code.
 | 
			
		||||
%	\begin{center}
 | 
			
		||||
%		\begin{tikzpicture}
 | 
			
		||||
%			\node[anchor=west,color=gray] at (-2.3, 0) {Bits};
 | 
			
		||||
%			\node[anchor=west,color=gray] at (-2.3, -0.5) {Meaning};
 | 
			
		||||
%			\draw[color=gray] (-2.3, -0.25) -- (5.5, -0.25);
 | 
			
		||||
%			\draw[color=gray] (-2.3, 0.15) -- (-2.3, -0.65);
 | 
			
		||||
%
 | 
			
		||||
%			\node at (0, 0) {\texttt{0}};
 | 
			
		||||
%			\node at (1, 0) {\texttt{0}};
 | 
			
		||||
%			\node at (2, 0) {\texttt{1}};
 | 
			
		||||
%			\node at (3, 0) {\texttt{0}};
 | 
			
		||||
%			\node at (4, 0) {\texttt{1}};
 | 
			
		||||
%			\node at (5, 0) {\texttt{1}};
 | 
			
		||||
%			\node at (6, 0) {\texttt{0}};
 | 
			
		||||
%			\node at (7, 0) {\texttt{0}};
 | 
			
		||||
%			\node at (8, 0) {\texttt{1}};
 | 
			
		||||
%
 | 
			
		||||
%			\draw (-0.5, 0.25) -- (8.5, 0.25);
 | 
			
		||||
%			\draw (-0.5, -0.25) -- (8.5, -0.25);
 | 
			
		||||
%			\draw (-0.5, -0.75) -- (8.5, -0.75);
 | 
			
		||||
%
 | 
			
		||||
%			\draw (-0.5, 0.25) -- (-0.5, -0.75);
 | 
			
		||||
%			\draw (0.5, 0.25) -- (0.5, -0.75);
 | 
			
		||||
%			\draw (8.5, 0.25) -- (8.5, -0.75);
 | 
			
		||||
%
 | 
			
		||||
%			\node at (0, -0.5) {flag};
 | 
			
		||||
%			\node at (4.5, -0.5) {if flag \texttt{<pos, len>}, else eight-bit symbol};
 | 
			
		||||
%		\end{tikzpicture}
 | 
			
		||||
%	\end{center}
 | 
			
		||||
%
 | 
			
		||||
%	To encode a string, we read it using a \say{window}, shown below. This window consists of
 | 
			
		||||
%	a search buffer and a lookahead buffer, both of which have a fixed (but configurable) size.
 | 
			
		||||
%	This window passes over the string one character at a time, inserting a pointer if it finds
 | 
			
		||||
%	the lookahead buffer inside its search buffer, and a plain character otherwise.
 | 
			
		||||
%
 | 
			
		||||
%
 | 
			
		||||
%	\begin{center}
 | 
			
		||||
%		\begin{tikzpicture}
 | 
			
		||||
%			% Text tape
 | 
			
		||||
%			\node[color=gray] at (-0.75, 0) {\texttt{...}};
 | 
			
		||||
%			\node[color=gray] at (0.0, 0) {\texttt{D}};
 | 
			
		||||
%			\node at (0.5, 0) {\texttt{A}};
 | 
			
		||||
%			\node at (1.0, 0) {\texttt{B}};
 | 
			
		||||
%			\node at (1.5, 0) {\texttt{C}};
 | 
			
		||||
%			\node at (2.0, 0) {\texttt{D}};
 | 
			
		||||
%			\node at (2.5, 0) {\texttt{A}};
 | 
			
		||||
%			\node at (3.0, 0) {\texttt{B}};
 | 
			
		||||
%			\node at (3.5, 0) {\texttt{C}};
 | 
			
		||||
%			\node at (4.0, 0) {\texttt{D}};
 | 
			
		||||
%			\node[color=gray] at (4.5, 0) {\texttt{B}};
 | 
			
		||||
%			\node[color=gray] at (5.0, 0) {\texttt{D}};
 | 
			
		||||
%			\node[color=gray] at (5.5, 0) {\texttt{A}};
 | 
			
		||||
%			\node[color=gray] at (6.0, 0) {\texttt{C}};
 | 
			
		||||
%			\node[color=gray] at (6.75, 0) {\texttt{...}};
 | 
			
		||||
%
 | 
			
		||||
%			\draw (-1.75, 0.25) -- (7.25, 0.25);
 | 
			
		||||
%			\draw (-1.75, -0.25) -- (7.25, -0.25);
 | 
			
		||||
%
 | 
			
		||||
%
 | 
			
		||||
%			\draw[line width = 0.7mm, color=oblue, dotted] (2.25, 0.5) -- (2.25, -0.5);
 | 
			
		||||
%			\draw[line width = 0.7mm, color=oblue]
 | 
			
		||||
%				(-1.25, 0.5)
 | 
			
		||||
%				-- (4.25, 0.5)
 | 
			
		||||
%				-- (4.25, -0.5)
 | 
			
		||||
%				-- (-1.25, -0.5)
 | 
			
		||||
%				-- cycle
 | 
			
		||||
%			;
 | 
			
		||||
%
 | 
			
		||||
%			\draw
 | 
			
		||||
%				(4.2, -0.625)
 | 
			
		||||
%				-- (4.2, -0.75)
 | 
			
		||||
%				to node[anchor=north, midway] {lookahead} (2.3, -0.75)
 | 
			
		||||
%				-- (2.3, -0.625)
 | 
			
		||||
%			;
 | 
			
		||||
%
 | 
			
		||||
%			\draw
 | 
			
		||||
%				(2.2, -0.625)
 | 
			
		||||
%				-- (2.2, -0.75)
 | 
			
		||||
%				to node[anchor=north, midway] {search buffer} (-1.1, -0.75)
 | 
			
		||||
%				-- (-1.1, -0.625)
 | 
			
		||||
%			;
 | 
			
		||||
%
 | 
			
		||||
%			\draw[color=gray]
 | 
			
		||||
%				(2.2, 0.625)
 | 
			
		||||
%				-- (2.2, 0.75)
 | 
			
		||||
%				to node[anchor=south, midway] {match!} (0.3, 0.75)
 | 
			
		||||
%				-- (0.3, 0.625)
 | 
			
		||||
%			;
 | 
			
		||||
%
 | 
			
		||||
%			%\draw[->, color=gray] (2.5, 0.3) -- (2.5, 0.8) to[out=90,in=90] (0.5, 0.8);
 | 
			
		||||
%			\node at (7.0, -0.75) {Result: \texttt{[$\cdot\cdot\cdot$DABCD<4,4>$\cdot\cdot\cdot$]}};
 | 
			
		||||
%		\end{tikzpicture}
 | 
			
		||||
%	\end{center}
 | 
			
		||||
%
 | 
			
		||||
%	This is not the exact process used in practice---but it's close enough. \par
 | 
			
		||||
%	This process may be tweaked in any number of ways.
 | 
			
		||||
%\end{instructornote}
 | 
			
		||||
%
 | 
			
		||||
%\makeatletter\if@solutions
 | 
			
		||||
%	\vfill
 | 
			
		||||
%	\pagebreak
 | 
			
		||||
%\fi\makeatother
 | 
			
		||||
		Reference in New Issue
	
	Block a user