ECC edits
This commit is contained in:
@ -30,29 +30,6 @@ Which of the following could be valid ISBNs?
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\problem{}
|
||||
Show that the following sum is divisible by 11 iff $n_1n_2...n_{10}$ is a valid ISBN-10.
|
||||
$$
|
||||
\sum_{i = 1}^{10} (11 - i)n_i
|
||||
$$
|
||||
|
||||
\begin{solution}
|
||||
Proof that valid $\implies$ divisible, working in mod 11:
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
$10n_1 + 9n_2 + ... + 2n_9 + n_{10} \equiv$ \par
|
||||
$(-n_1) + (-2n_2) + ... + (-9n_9) + n_{10} =$ \par
|
||||
$-n_{10} + n_{10} \equiv 0$
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
Having done this, the rest is easy. Work in reverse, or note that each step above is an iff.
|
||||
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Take a valid ISBN-10 and change one digit. Is it possible that you get another valid ISBN-10? \par
|
||||
Provide an example or a proof.
|
||||
@ -89,6 +66,31 @@ This is called a \textit{transposition error}.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
Show that the following sum is divisible by 11 iff $n_1n_2...n_{10}$ is a valid ISBN-10.
|
||||
$$
|
||||
\sum_{i = 1}^{10} (11 - i)n_i
|
||||
$$
|
||||
|
||||
\begin{solution}
|
||||
Proof that valid $\implies$ divisible, working in mod 11:
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
$10n_1 + 9n_2 + ... + 2n_9 + n_{10} \equiv$ \par
|
||||
$(-n_1) + (-2n_2) + ... + (-9n_9) + n_{10} =$ \par
|
||||
$-n_{10} + n_{10} \equiv 0$
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
Having done this, the rest is easy. Work in reverse, or note that each step above is an iff.
|
||||
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\problem{}
|
||||
|
Reference in New Issue
Block a user