ECC edits
This commit is contained in:
		| @ -30,29 +30,6 @@ Which of the following could be valid ISBNs? | ||||
| \vfill | ||||
| \pagebreak | ||||
|  | ||||
| \problem{} | ||||
| Show that the following sum is divisible by 11 iff $n_1n_2...n_{10}$ is a valid ISBN-10. | ||||
| $$ | ||||
| 	\sum_{i = 1}^{10} (11 - i)n_i | ||||
| $$ | ||||
|  | ||||
| \begin{solution} | ||||
| 	Proof that valid $\implies$ divisible, working in mod 11: | ||||
|  | ||||
| 	\vspace{2mm} | ||||
|  | ||||
| 	$10n_1 + 9n_2 + ... + 2n_9 + n_{10} \equiv$ \par | ||||
| 	$(-n_1) + (-2n_2) + ... + (-9n_9) + n_{10} =$ \par | ||||
| 	$-n_{10} + n_{10} \equiv 0$ | ||||
|  | ||||
| 	\vspace{2mm} | ||||
|  | ||||
| 	Having done this, the rest is easy. Work in reverse, or note that each step above is an iff. | ||||
|  | ||||
| \end{solution} | ||||
|  | ||||
| \vfill | ||||
|  | ||||
| \problem{} | ||||
| Take a valid ISBN-10 and change one digit. Is it possible that you get another valid ISBN-10? \par | ||||
| Provide an example or a proof. | ||||
| @ -89,6 +66,31 @@ This is called a \textit{transposition error}. | ||||
| \end{solution} | ||||
|  | ||||
| \vfill | ||||
|  | ||||
|  | ||||
|  | ||||
| \problem{} | ||||
| Show that the following sum is divisible by 11 iff $n_1n_2...n_{10}$ is a valid ISBN-10. | ||||
| $$ | ||||
| 	\sum_{i = 1}^{10} (11 - i)n_i | ||||
| $$ | ||||
|  | ||||
| \begin{solution} | ||||
| 	Proof that valid $\implies$ divisible, working in mod 11: | ||||
|  | ||||
| 	\vspace{2mm} | ||||
|  | ||||
| 	$10n_1 + 9n_2 + ... + 2n_9 + n_{10} \equiv$ \par | ||||
| 	$(-n_1) + (-2n_2) + ... + (-9n_9) + n_{10} =$ \par | ||||
| 	$-n_{10} + n_{10} \equiv 0$ | ||||
|  | ||||
| 	\vspace{2mm} | ||||
|  | ||||
| 	Having done this, the rest is easy. Work in reverse, or note that each step above is an iff. | ||||
|  | ||||
| \end{solution} | ||||
|  | ||||
| \vfill | ||||
| \pagebreak | ||||
|  | ||||
| \problem{} | ||||
|  | ||||
		Reference in New Issue
	
	Block a user