diff --git a/Advanced/Euler's Number/parts/1 limits.tex b/Advanced/Euler's Number/parts/1 limits.tex index 030edba..4aea0ed 100644 --- a/Advanced/Euler's Number/parts/1 limits.tex +++ b/Advanced/Euler's Number/parts/1 limits.tex @@ -59,7 +59,7 @@ and of a bounded sequence that does not have a limit. \definition{Limits (formal)} Let $a_n$ be a sequence. $L$ is the \textit{limit} of this sequence if for any $\varepsilon < 0$, \par -we can find an $N$ so that $|a_n - L| < \varepsilon \forall n \geq N$. +we can find an $N$ so that $|a_n - L| < \varepsilon ~~ \forall n \geq N$. \vfill diff --git a/Advanced/Intro to Proofs/main.tex b/Advanced/Intro to Proofs/main.tex index 8e8779a..c6d05ea 100755 --- a/Advanced/Intro to Proofs/main.tex +++ b/Advanced/Intro to Proofs/main.tex @@ -52,6 +52,7 @@ + \problem{} Let $r \in \mathbb{R}$. We say $r$ is \textit{rational} if there exist $p, q \in \mathbb{Z}, q \neq 0$ so that $r = \frac{a}{b}$ @@ -63,11 +64,13 @@ a proof. \end{itemize} - \vfill \pagebreak + + + \problem{} Let $X = \{x \in \mathbb{Z} ~\bigl|~ n \geq 2 \}$. For $k \geq 2$, degine $X_k = \{kx ~\bigl|~ x \in X \}$. \par What is $X - (X_2 \cup X_3 \cup X_4 \cup ...)$? Prove your claim. @@ -77,6 +80,8 @@ + + \problem{} For a set $X$, define its \textit{diagonal} as $\text{D}(X) = \{ (x, x) \in X \times X ~\bigl|~ x \in X \}$. @@ -100,11 +105,14 @@ Friendship is always mutual. \end{itemize} - \vfill \pagebreak + + + + \problem{} Let $f$ be a function from a set $X$ to a set $Y$. We say $f$ is \textit{injective} if $f(x) = f(y) \implies x = y$. \par We say $f$ is \textit{surjective} if for all $y \in Y$ there exists an $x \in X$ so that $f(x) = y$. \par @@ -119,8 +127,138 @@ \vfill \pagebreak + + + + + \problem{} + Let $X = \{1, 2, ..., n\}$ for some $n \geq 2$. Let $k \in \mathbb{Z}$ so that $1 \leq k \leq n - 1$. \par + Let $E = \{Y \subset X ~\bigl|~ |Y| = k\}$, $E_1 = \{Y \in E ~\bigl|~ 1 \in Y\}$, and $E_2 = \{Y \in E ~\bigl|~ 1 \notin Y\}$ + + \vspace{2mm} + \begin{itemize}[itemsep=4mm] + \item Show that $\{E_1, E_2\}$ is a partition of $E$. \par + In other words, show that $\varnothing \neq E_1$, $\varnothing \neq E_2$, $E_1 \cup E_2 = E$, and $E_1 \cap E_2 = \varnothing$. \par + \hint{What does this mean in English?} + + \item Compute $|E_1|$, $|E_2|$, and $|E|$. \par + Recall that a set of size $n$ has $\binom{n}{k}$ subsets of size $k$. + + \item Conclude that for any $n$ and $k$ satisfying the conditions above, + $$ + \binom{n-1}{k} + \binom{n-1}{k-1} = \binom{n}{k} + $$ + + \item For $t \in \mathbb{N}$, show that $\binom{2t}{t}$ is even. + + \end{itemize} + + + \vfill + \pagebreak + + + + + + + \problem{} + Let $x, y \in \mathbb{N}$ be natural numbers. + Consider the set $S = \{ax + by ~\bigl|~ a, b \in \mathbb{Z}, ax + by = 0\}$. \par + The well-ordering principle states that every nonempty subset of the natural numbers has a least element. + You many also need the division algorithm. + + \vspace{4mm} + \begin{itemize}[itemsep=4mm] + \item Show that $S$ has a least element. Call it $d$. + \item Let $z = \text{gcd}(x, y)$. Show that $z$ divides $d$. + \item Show that $d$ divides $x$ and $d$ divides $y$. + \item Prove or disprove $\text{gcd}(x, y) \in S$. + \end{itemize} + + \vfill + \pagebreak + + + + + + \problem{} + + \begin{itemize}[itemsep=4mm] + \item Let $f: X \to Y$ be an injective function. Show that for any two functions $g: Z \to X$ and $h: Z \to X$, + if $f \circ g = f \circ h$ from $Z$ to $Y$ then $g = h$ from $Z$ to $X$. \par + By definition, functions are equal if they agree on every input in their domain. \par + \hint{This is a one-line proof.} + + + \item Let $f: X \to Y$ be a surjective function. + Show that for any two functions $g: Y \to W$ and $h: Y \to W$, if + $g \circ f = h \circ f \implies g = h$. + + \item[\star] Let $f: X \to Y$ be a function where for any set $Z$ and functions $g: Z \to X$ and $h: Z \to X$, + $f \circ g = f \circ h \implies g = h$. Show that $f$ is injective. + + \item[\star] Let $f: X \to Y$ be a function where for any set $W$ and functions $g: Y \to W$ and $h: Y \to W$, + $g \circ f = h \circ f \implies g = h$. Show f is surjective. + \end{itemize} + + \vfill + \pagebreak + + + + + + + \problem{} + In this problem we prove the binomial theorem: + for $a, b \in \mathbb{R}$ and $n \in \mathbb{Z}^+$\hspace{-0.5ex}, we have + $$ + (a + b)^n = \sum_{k=0}^n \binom{n}{k}a^kb^{N-k} + $$ + In the proof below, we let $a$ and $b$ be arbitrary numbers. + + \vspace{4mm} + \begin{itemize} + \item Check that this formula works for $n = 0$. Also, check a few small $n$ + to get a sense of what's going on. + + \item Let $N \in \mathbb{N}$. Suppose we know that for a specific value of $N$, + $$ + (a + b)^N = \sum_{k=0}^N \binom{N}{k}a^kb^{N-k} + $$ + Now, show that this formula also works for $N = N + 1$. + + \item Conclude that this formula works for all $a, b \in \mathbb{R}$ and $n \in \mathbb{Z}^+$\hspace{-0.5ex}. + \end{itemize} + + \vfill + \pagebreak + + + \problem{} + A \textit{relation} on a set $X$ is an $R \subset X \times X$. \par + \begin{itemize} + \item We say $R$ is \textit{reflexive} if $(x,x) \in R$ for all $x \in X$. + \item We say $R$ is \textit{symmetric} if $(x, y) \in R \implies (y, x) \in R$. + \item We say $R$ is \textit{transitive} if $(x, y) \in R$ and $(y, z) \in R$ imply $(x, z) \in R$. + \item We say $R$ is an \textit{equivalence relation} if it is reflexive, symmetric, and transitive. + \end{itemize} + Say we have a set $X$ and an equivalence relation $R$. \par + The \textit{equivalence class} of an element $x \in X$ is the set $\{y \in X ~\bigl|~ (x, y) \in R\}$. + + + \vspace{4mm} + + Let $R$ be an equivalence relation on a set $X$. \par + Show that the set of equivalence classes is a partition of $X$. + + \vfill + \pagebreak + \end{document} \ No newline at end of file diff --git a/Misc/Warm-Ups/nontransitive dice.tex b/Misc/Warm-Ups/nontransitive dice.tex new file mode 100755 index 0000000..e48b1ce --- /dev/null +++ b/Misc/Warm-Ups/nontransitive dice.tex @@ -0,0 +1,128 @@ +\documentclass[ + solutions, + hidewarning, + singlenumbering, + nopagenumber +]{../../resources/ormc_handout} + +\usepackage{tikz} +\usetikzlibrary{arrows.meta} +\usetikzlibrary{shapes.geometric} + +% We put nodes in a separate layer, so we can +% slightly overlap with paths for a perfect fit +\pgfdeclarelayer{nodes} +\pgfdeclarelayer{path} +\pgfsetlayers{main,nodes} + +% Layer settings +\tikzset{ + % Layer hack, lets us write + % later = * in scopes. + layer/.style = { + execute at begin scope={\pgfonlayer{#1}}, + execute at end scope={\endpgfonlayer} + }, + % + % Arrowhead tweak + >={Latex[ width=2mm, length=2mm ]}, + % + % Nodes + main/.style = { + draw, + circle, + fill = white, + line width = 0.35mm + } +} + +\title{Warm Up: Odd dice} +\subtitle{Prepared by Mark on \today} + + +\begin{document} + + \maketitle + + \problem{} + + We say a set of dice $\{A, B, C\}$ is \textit{nontransitive} + if, on average, $A$ beats $B$, $B$ beats $C$, and $C$ beats $A$. + In other words, we get a counterintuitive \say{rock - paper - scissors} effect. + + \vspace{2mm} + + Create a set of nontransitive six-sided dice. \par + \hint{All sides should be numbered with positive integers less than 10.} + + \begin{solution} + One possible set can be numbered as follows: + \begin{itemize} + \item Die $A$: $2, 2, 4, 4, 9, 9$ + \item Die $B$: $1, 1, 6, 6, 8, 8$ + \item Die $C$: $3, 3, 5, 5, 7, 7$ + \end{itemize} + + \vspace{4mm} + + Another solution is below: + \begin{itemize} + \item Die $A$: $3, 3, 3, 3, 3, 6$ + \item Die $B$: $2, 2, 2, 5, 5, 5$ + \item Die $C$: $1, 4, 4, 4, 4, 4$ + \end{itemize} + \end{solution} + + \vfill + + \problem{} + Now, consider the set of six-sided dice below: + \begin{itemize} + \item Die $A$: $4, 4, 4, 4, 4, 9$ + \item Die $B$: $3, 3, 3, 3, 8, 8$ + \item Die $C$: $2, 2, 2, 7, 7, 7$ + \item Die $D$: $1, 1, 6, 6, 6, 6$ + \item Die $E$: $0, 5, 5, 5, 5, 5$ + \end{itemize} + On average, which die beats each of the others? Draw a graph. \par + + \begin{solution} + \begin{center} + \begin{tikzpicture}[scale = 0.5] + \begin{scope}[layer = nodes] + \node[main] (a) at (-2, 0.2) {$a$}; + \node[main] (b) at (0, 2) {$b$}; + \node[main] (c) at (2, 0.2) {$c$}; + \node[main] (d) at (1, -2) {$d$}; + \node[main] (e) at (-1, -2) {$e$}; + \end{scope} + + \draw[->] + (a) edge (b) + (b) edge (c) + (c) edge (d) + (d) edge (e) + (e) edge (a) + + (a) edge (c) + (b) edge (d) + (c) edge (e) + (d) edge (a) + (e) edge (b) + ; + \end{tikzpicture} + \end{center} + \end{solution} + + \vfill + + Now, say we roll each die twice. What happens to the graph above? + + \begin{solution} + The direction of each edge is reversed! + \end{solution} + + \vfill + \pagebreak + +\end{document} \ No newline at end of file