Finished symmetric group handout
This commit is contained in:
@ -28,19 +28,31 @@
|
||||
|
||||
\input{parts/0 intro}
|
||||
\input{parts/1 cycle}
|
||||
\input{parts/2 groups}
|
||||
\input{parts/3 subgroup}
|
||||
|
||||
|
||||
% decomposition into transpositions
|
||||
% few more problems?
|
||||
\section{Bonus problems}
|
||||
|
||||
% inline functions
|
||||
% symmetric group
|
||||
% order & generators
|
||||
% subgroups
|
||||
\problem{}
|
||||
Show that $x$ has a multiplicative inverse mod $n$ iff $\text{gcd}(x, n) = 1$
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Let $\sigma = (\sigma_1 \sigma_2 ... \sigma_k)$ be a $k$-cycle in $S_n$, and let $\tau$ be an arbitrary element of $S_n$. \par
|
||||
Show that $\tau \sigma \tau^{-1}$ = $\bigl(\tau(\sigma_1), \tau(\sigma_2), ..., \tau(\sigma_k)\bigr)$ \par
|
||||
\hint{As usual, $\sigma$ is a permutation. Thus, $\sigma(x)$ is the value at position $x$ after applying $\sigma$.}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Show that the set $\Bigl\{ (1, 2),~ (1,2,...,n) \Bigr\}$ generates $S_n$.
|
||||
\vfill
|
||||
|
||||
% TODO: (a second day?)
|
||||
% alternating group
|
||||
|
||||
% type and sign
|
||||
% type and sign and conjugation
|
||||
% isomorphisms & automorphisms
|
||||
% automorphism groups
|
||||
|
||||
\end{document}
|
||||
|
Reference in New Issue
Block a user