Finished symmetric group handout

This commit is contained in:
2024-01-03 11:44:34 -08:00
parent bd88b894a1
commit d285b4efe9
4 changed files with 474 additions and 17 deletions

View File

@ -28,19 +28,31 @@
\input{parts/0 intro}
\input{parts/1 cycle}
\input{parts/2 groups}
\input{parts/3 subgroup}
% decomposition into transpositions
% few more problems?
\section{Bonus problems}
% inline functions
% symmetric group
% order & generators
% subgroups
\problem{}
Show that $x$ has a multiplicative inverse mod $n$ iff $\text{gcd}(x, n) = 1$
\vfill
\problem{}
Let $\sigma = (\sigma_1 \sigma_2 ... \sigma_k)$ be a $k$-cycle in $S_n$, and let $\tau$ be an arbitrary element of $S_n$. \par
Show that $\tau \sigma \tau^{-1}$ = $\bigl(\tau(\sigma_1), \tau(\sigma_2), ..., \tau(\sigma_k)\bigr)$ \par
\hint{As usual, $\sigma$ is a permutation. Thus, $\sigma(x)$ is the value at position $x$ after applying $\sigma$.}
\vfill
\problem{}
Show that the set $\Bigl\{ (1, 2),~ (1,2,...,n) \Bigr\}$ generates $S_n$.
\vfill
% TODO: (a second day?)
% alternating group
% type and sign
% type and sign and conjugation
% isomorphisms & automorphisms
% automorphism groups
\end{document}