Typo fixes
This commit is contained in:
parent
cc42a42b01
commit
cec0cb5dc5
@ -57,14 +57,14 @@ In other words, show that there is always an integer $n$ so that $f^n(x) = x$.
|
|||||||
|
|
||||||
\vfill
|
\vfill
|
||||||
|
|
||||||
\definition{Composition}
|
\definition{Composition}<compdef>
|
||||||
The \textit{composition} of two permutations $f$ and $g$ is the permutation $h(x) = f(g(x))$. \par
|
The \textit{composition} of two permutations $f$ and $g$ is the permutation $h(x) = f(g(x))$. \par
|
||||||
The usual notation for this is $f \circ g$, but we'll simply write $fg$.
|
The usual notation for this is $f \circ g$, but we'll simply write $fg$.
|
||||||
|
|
||||||
\problem{}
|
\problem{}
|
||||||
What is $[1324][4321]$? \par
|
What is $[1324][4321]$? \par
|
||||||
How about $[321][213][231]$? \par
|
How about $[321][213][231]$? \par
|
||||||
\hint{composition is left-associative, so we evaluate $abc$ as $(ab)c$}
|
\hint{is composition is left or right-associative? See \ref{compdef}}
|
||||||
|
|
||||||
|
|
||||||
\vfill
|
\vfill
|
||||||
@ -440,7 +440,7 @@ How about $(123)$? And $(4231)$? \par
|
|||||||
|
|
||||||
|
|
||||||
\problem{}
|
\problem{}
|
||||||
Say $\sigma$ is a permutation composed of cycles $\sigma_1\sigma_2...\sigma_k$. \par
|
Say $\sigma$ is a permutation composed of disjoint cycles $\sigma_1\sigma_2...\sigma_k$. \par
|
||||||
Say we know the order of all $\sigma_i$. What is the order of $\sigma$?
|
Say we know the order of all $\sigma_i$. What is the order of $\sigma$?
|
||||||
|
|
||||||
\begin{solution}
|
\begin{solution}
|
||||||
@ -479,7 +479,8 @@ Show that any permutation is a product of transpositions.
|
|||||||
Show that any permutation is a product of transpositions of the form $(1, k)$. \par
|
Show that any permutation is a product of transpositions of the form $(1, k)$. \par
|
||||||
|
|
||||||
\begin{solution}
|
\begin{solution}
|
||||||
Use \ref{simpletrans} and rewrite each $(a, b)$ as $(1, a)(1, b)(1, a)$.
|
Use \ref{simpletrans} and rewrite each $(a, b)$ as $(1, a)(1, b)(1, a)$. \par
|
||||||
|
Showing that $(a, b) = (1, a)(1, b)(1, a)$ is fairly easy.
|
||||||
\end{solution}
|
\end{solution}
|
||||||
|
|
||||||
\vfill
|
\vfill
|
||||||
@ -491,7 +492,8 @@ Show that any permutation is a product of transpositions of the form $(1, k)$. \
|
|||||||
Show that any transposition $(a, b)$ is equal to the product $(a, a+1)(a+1, b)(a, a+1)$.
|
Show that any transposition $(a, b)$ is equal to the product $(a, a+1)(a+1, b)(a, a+1)$.
|
||||||
|
|
||||||
\begin{solution}
|
\begin{solution}
|
||||||
TODO
|
This is the same as the $(1, a)(1, b)(1, a)$ case above, but we use $a + 1$
|
||||||
|
as a \say{working slot} instead of $1$.
|
||||||
\end{solution}
|
\end{solution}
|
||||||
|
|
||||||
\vfill
|
\vfill
|
||||||
|
@ -98,7 +98,7 @@ Show that $\mathbb{Z}_7^\times$ and $\mathbb{Z}_9^\times$ are isomorphic.
|
|||||||
|
|
||||||
|
|
||||||
\problem{}
|
\problem{}
|
||||||
Show that $\mathbb{Z}_{10}^\times$ and $\mathbb{Z}_4^\times$, and $\mathbb{Z}_3$ are isomorphic.
|
Show that $\mathbb{Z}_{10}^\times$ and $\mathbb{Z}_5^\times$, and $\mathbb{Z}_4$ are isomorphic.
|
||||||
\hint{
|
\hint{
|
||||||
Build a bijection with the above properties. \\
|
Build a bijection with the above properties. \\
|
||||||
Remember that a group is fully defined by its multiplication table.
|
Remember that a group is fully defined by its multiplication table.
|
||||||
|
Loading…
x
Reference in New Issue
Block a user