Added equivalence problems
This commit is contained in:
parent
20c0a84a0c
commit
cb80d5be96
@ -21,5 +21,6 @@
|
|||||||
\input{parts/1 structures.tex}
|
\input{parts/1 structures.tex}
|
||||||
\input{parts/2 quantifiers.tex}
|
\input{parts/2 quantifiers.tex}
|
||||||
\input{parts/3 sets.tex}
|
\input{parts/3 sets.tex}
|
||||||
|
\input{parts/4 equivalence.tex}
|
||||||
|
|
||||||
\end{document}
|
\end{document}
|
@ -14,7 +14,7 @@ A structure's symbols give meaning to the objects in its universe.
|
|||||||
|
|
||||||
\vspace{2mm}
|
\vspace{2mm}
|
||||||
|
|
||||||
Symbols generally come in three types:
|
Symbols come in three types:
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item Constant symbols, which let us specify specific elements of our universe. \par
|
\item Constant symbols, which let us specify specific elements of our universe. \par
|
||||||
Examples: $0, 1, \frac{1}{2}, \pi$
|
Examples: $0, 1, \frac{1}{2}, \pi$
|
||||||
|
55
Advanced/Definable Sets/parts/4 equivalence.tex
Normal file
55
Advanced/Definable Sets/parts/4 equivalence.tex
Normal file
@ -0,0 +1,55 @@
|
|||||||
|
\section{Equivalence (Bonus)}
|
||||||
|
|
||||||
|
\generic{Notation:}
|
||||||
|
Let $S$ be a structure and $\varphi$ a formula. \par
|
||||||
|
If $\varphi$ is true in $S$, we write $S \models \varphi$.
|
||||||
|
|
||||||
|
\definition{}
|
||||||
|
Let $S$ and $T$ be structures. \par
|
||||||
|
We say $S$ and $T$ are \textit{equivalent} and write $S \equiv T$ if for any formula $\varphi$, $S \models \varphi \Longleftrightarrow T \models \varphi$.
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Show that $
|
||||||
|
\Bigl(\mathbb{Z} ~\big|~ \{ +, 0 \}\Bigr)
|
||||||
|
\not\equiv
|
||||||
|
\Bigl(\mathbb{R} ~\big|~ \{ +, 0 \}\Bigr)
|
||||||
|
$
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Show that $
|
||||||
|
\Bigl(\mathbb{Z} ~\big|~ \{ +, 0 \}\Bigr)
|
||||||
|
\not\equiv
|
||||||
|
\Bigl(\mathbb{N} ~\big|~ \{ +, 0 \}\Bigr)
|
||||||
|
$
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Show that $
|
||||||
|
\Bigl(\mathbb{R} ~\big|~ \{ +, 0 \}\Bigr)
|
||||||
|
\not\equiv
|
||||||
|
\Bigl(\mathbb{N} ~\big|~ \{ +, 0 \}\Bigr)
|
||||||
|
$
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Show that $
|
||||||
|
\Bigl(\mathbb{R} ~\big|~ \{ +, 0 \}\Bigr)
|
||||||
|
\not\equiv
|
||||||
|
\Bigl(\mathbb{Z}^2 ~\big|~ \{ +, 0 \}\Bigr)
|
||||||
|
$
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Show that $
|
||||||
|
\Bigl(\mathbb{Z} ~\big|~ \{ +, 0 \}\Bigr)
|
||||||
|
\not\equiv
|
||||||
|
\Bigl(\mathbb{Z}^2 ~\big|~ \{ +, 0 \}\Bigr)
|
||||||
|
$
|
||||||
|
|
||||||
|
\begin{solution}
|
||||||
|
All of the above are easy, but the last one can take a while. \par
|
||||||
|
The trick is to notice that $\mathbb{Z}$ has two equivalence classes mod 2, while $\mathbb{Z}^2$ has four.
|
||||||
|
\end{solution}
|
||||||
|
|
||||||
|
\vfill
|
Loading…
x
Reference in New Issue
Block a user