Graph theory partial cleanup
This commit is contained in:
parent
90bea68cb5
commit
c9dd7f4f99
@ -24,6 +24,7 @@
|
||||
|
||||
\input{parts/0 intro.tex}
|
||||
\input{parts/1 paths.tex}
|
||||
|
||||
\input{parts/2 planar.tex}
|
||||
%\input{parts/3 counting.tex}
|
||||
|
||||
\end{document}
|
@ -123,5 +123,11 @@ in my class. Isn't it funny that each of them
|
||||
has 5 friends in the class?} \say{This cannot be true,} immediately replies the other girl.
|
||||
How did she know?
|
||||
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Say $G$ is a graph with nine vertices. Show that $G$ has at least five vertices of degree six or at least six vertices of degree 5.
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
@ -201,11 +201,11 @@ Is there an Eulerian path in the following graph? \par
|
||||
Is there an Eulerian path in the following graph? \par
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[
|
||||
node distance={20mm},
|
||||
thick,
|
||||
main/.style = {draw, circle}
|
||||
]
|
||||
\begin{tikzpicture}[
|
||||
node distance={20mm},
|
||||
thick,
|
||||
main/.style = {draw, circle}
|
||||
]
|
||||
|
||||
\node[main] (1) {$x_1$};
|
||||
\node[main] (2) [above right of=1] {$x_2$};
|
||||
|
@ -0,0 +1,7 @@
|
||||
\section{Planar Graphs}
|
||||
|
||||
\textbf{TODO.} Will feature planar graphs, euler's formula, utility problem, utility problem on a torus
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
@ -0,0 +1,157 @@
|
||||
\section{Counting Graphs}
|
||||
|
||||
\definition{}
|
||||
A graph is \textit{bipartite} if its nodes can be split into two groups, where no two nodes in the same group share an edge. One such graph is shown below.
|
||||
|
||||
\problem{}
|
||||
Draw a bipartite graph with 5 vertices.
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Is the following graph bipartite? \par
|
||||
\hint{Be careful.}
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}
|
||||
% Nodes
|
||||
\begin{scope}
|
||||
\node[main] (A) at (0mm, 0mm) {$A$};
|
||||
\node[main] (B) at (0mm, -10mm) {$B$};
|
||||
\node[main] (C) at (0mm, -20mm) {$C$};
|
||||
|
||||
\node[main] (D) at (20mm, 0mm) {$D$};
|
||||
\node[main] (E) at (20mm, -10mm) {$E$};
|
||||
\node[main] (F) at (20mm, -20mm) {$F$};
|
||||
\end{scope}
|
||||
|
||||
% Edges
|
||||
\draw
|
||||
(A) edge (D)
|
||||
(A) edge (E)
|
||||
(B) edge (F)
|
||||
(C) edge (E)
|
||||
(C) edge (D)
|
||||
(E) edge (F)
|
||||
;
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
\vfill
|
||||
|
||||
\definition{}
|
||||
A \textit{subgraph} is a graph inside another graph. \par
|
||||
In the next problem, the left graph contains the left graph. \par
|
||||
The triangle is a subgraph of the larger graph.
|
||||
|
||||
|
||||
\problem{}
|
||||
Find two subgraphs of the triangle in the larger graph.
|
||||
|
||||
\begin{center}
|
||||
\adjustbox{valign=c}{
|
||||
\begin{tikzpicture}
|
||||
% Nodes
|
||||
\begin{scope}
|
||||
\node[main] (1) {1};
|
||||
\node[main] (2) [right of=1] {2};
|
||||
\node[main] (3) [below of=1] {3};
|
||||
\end{scope}
|
||||
|
||||
% Edges
|
||||
\draw
|
||||
(1) edge (2)
|
||||
(2) edge (3)
|
||||
(3) edge (1)
|
||||
;
|
||||
\end{tikzpicture}
|
||||
}
|
||||
\hspace{20mm}
|
||||
\adjustbox{valign=c}{
|
||||
\begin{tikzpicture}
|
||||
% Nodes
|
||||
\begin{scope}
|
||||
\node[main] (1) {1};
|
||||
\node[main] (4) [below of=1] {4};
|
||||
\node[main] (3) [left of=4] {3};
|
||||
\node[main] (5) [right of=4] {5};
|
||||
\node[main] (6) [right of=5] {6};
|
||||
\node[main] (2) [above of=6] {2};
|
||||
\node[main] (7) [below of=4] {7};
|
||||
\end{scope}
|
||||
|
||||
% Edges
|
||||
\draw
|
||||
(1) edge (4)
|
||||
(2) edge (5)
|
||||
(2) edge (6)
|
||||
(3) edge (4)
|
||||
(4) edge (5)
|
||||
(4) edge (7)
|
||||
(5) edge (6)
|
||||
(3) edge (7)
|
||||
;
|
||||
\end{tikzpicture}
|
||||
}
|
||||
\end{center}
|
||||
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
A few special graphs have names. Here are a few you should know before we begin:
|
||||
|
||||
\definition{The path graph}
|
||||
The \textit{path graph} on $n$ vertices (written $P_n$) is a straight line of vertices connected by edges. \par
|
||||
$P_5$ is shown below.
|
||||
\begin{center}
|
||||
\begin{tikzpicture}
|
||||
\node[main] (1) {1};
|
||||
\node[main] (2) [right of=1] {2};
|
||||
\node[main] (3) [right of=2] {3};
|
||||
\node[main] (4) [right of=3] {4};
|
||||
\node[main] (5) [right of=4] {5};
|
||||
|
||||
\draw[-] (1) -- (2);
|
||||
\draw[-] (2) -- (3);
|
||||
\draw[-] (3) -- (4);
|
||||
\draw[-] (4) -- (5);
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
|
||||
\definition{The complete graph}
|
||||
The \textit{complete graph} on $n$ vertices (written $K_n$) is the graph that has $n$ nodes, all of which share an edge.
|
||||
$K_4$ is shown below.
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}
|
||||
\node[main] (1) {A};
|
||||
\node[main] (2) [above right of=1] {B};
|
||||
\node[main] (3) [below right of=1] {C};
|
||||
\node[main] (4) [above right of=3] {D};
|
||||
|
||||
\draw[-] (1) -- (2);
|
||||
\draw[-] (1) -- (3);
|
||||
\draw[-] (1) -- (4);
|
||||
\draw[-] (2) -- (3);
|
||||
\draw[-] (2) -- (4);
|
||||
\draw[-] (3) -- (4);
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
\begin{enumerate}
|
||||
\item How many times does $P_4$ appear in $K_9$?
|
||||
\item How many times does $C_4$ appear in $K_9$?
|
||||
\item How many times does $K_{4,4}$ appear in $K_9$?
|
||||
\item How many times does $C_5$ appear in $K_8$?
|
||||
\item How many times does $K_{3,3}$ appear in $K_{12}$?
|
||||
\item How many times does $K_{3,3}$ appear in $K_{6,6}$?
|
||||
\end{enumerate}
|
||||
|
||||
|
||||
|
@ -38,5 +38,8 @@
|
||||
},
|
||||
every path/.style = {
|
||||
line width = 0.3mm
|
||||
}
|
||||
},
|
||||
node distance={20mm},
|
||||
thick,
|
||||
main/.style = {draw, circle}
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user