ECC edits
This commit is contained in:
@@ -1,6 +1,8 @@
|
||||
\section{Error Detection}
|
||||
|
||||
An ISBN\footnote{International Standard Book Number} is a unique numeric book identifier. It comes in two forms: ISBN-10 and ISBN-13. Naturally, ISBN-10s have ten digits, and ISBN-13s have thirteen. The final digit in both versions is a \textit{check digit}.
|
||||
An ISBN\footnote{International Standard Book Number} is a unique identifier publishers assign to their books. \par
|
||||
It comes in two forms: ISBN-10 and ISBN-13. Naturally, ISBN-10s have ten digits, and ISBN-13s have thirteen.
|
||||
The final digit in both versions is a \textit{check digit}.
|
||||
|
||||
\vspace{3mm}
|
||||
|
||||
@@ -15,7 +17,8 @@ If $n_{10}$ is equal to 10, it is written as \texttt{X}.
|
||||
|
||||
|
||||
\problem{}
|
||||
Only one of the following ISBNs is valid. Which one is it?
|
||||
Only one of the following ISBNs is valid. Which one is it? \par
|
||||
\note[Note]{Dashes are meaningless.}
|
||||
|
||||
\begin{itemize}
|
||||
\item \texttt{0-134-54896-2}
|
||||
@@ -23,15 +26,16 @@ Only one of the following ISBNs is valid. Which one is it?
|
||||
\end{itemize}
|
||||
|
||||
\begin{solution}
|
||||
The first has an inconsistent check digit.
|
||||
The second is valid.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\problem{}
|
||||
Take a valid ISBN-10 and change one digit. Is it possible that you get another valid ISBN-10? \par
|
||||
Provide a proof.
|
||||
Take a valid ISBN-10 and change one digit. \par
|
||||
Is it possible that you get another valid ISBN-10? \par
|
||||
Provide an example or a proof.
|
||||
|
||||
\begin{solution}
|
||||
Let $S$ be the sum $10n_1 + 9n_2 + ... + 2n_9 + n_{10}$, before any digits are changed.
|
||||
@@ -50,9 +54,8 @@ Provide a proof.
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Take a valid ISBN-10 and swap two adjacent digits. When will the result be a valid ISBN-10? \par
|
||||
This is called a \textit{transposition error}.
|
||||
|
||||
Take a valid ISBN-10 and swap two adjacent digits. This is called a \textit{transposition error}. \par
|
||||
When will the result be a valid ISBN-10?
|
||||
|
||||
\begin{solution}
|
||||
Let $n_1n_2...n_{10}$ be a valid ISBN-10. \par
|
||||
@@ -68,7 +71,8 @@ This is called a \textit{transposition error}.
|
||||
\pagebreak
|
||||
|
||||
\definition{}
|
||||
ISBN-13 error checking is slightly different. Given a partial ISBN-13 $n_1 n_2 n_3 ... n_{12}$, the final digit is given by
|
||||
ISBN-13 error checking is slightly different. \par
|
||||
Given a partial ISBN-13 with digits $n_1 n_2 n_3 ... n_{12}$, the final digit is given by
|
||||
|
||||
$$
|
||||
n_{13} = \Biggr[ \sum_{i=1}^{12} n_i \times (2 + (-1)^i) \Biggl] \text{ mod } 10
|
||||
@@ -127,7 +131,7 @@ Take a valid ISBN-13 and swap two adjacent digits. When will the result be a val
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}<isbn-nocorrect>
|
||||
\problem{}<isbnnocorrect>
|
||||
\texttt{978-008-2066-466} was a valid ISBN until I changed a single digit. \par
|
||||
Can you find the digit I changed? Can you recover the original ISBN?
|
||||
|
||||
|
||||
Reference in New Issue
Block a user