Added cycle notation
This commit is contained in:
parent
0319c52248
commit
bd88b894a1
@ -5,7 +5,7 @@
|
||||
singlenumbering
|
||||
]{../../resources/ormc_handout}
|
||||
\usepackage{../../resources/macros}
|
||||
|
||||
\usetikzlibrary{calc}
|
||||
|
||||
\uptitlel{Advanced 2}
|
||||
\uptitler{Winter 2023}
|
||||
@ -14,14 +14,22 @@
|
||||
|
||||
|
||||
|
||||
\def\line#1#2{
|
||||
\draw[line width = 0.3mm, ->, ocyan]
|
||||
(#1)
|
||||
-- ($(#1) + (0, -1)$)
|
||||
-- ($(#2) + (0,1)$)
|
||||
-- (#2);
|
||||
}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\maketitle
|
||||
|
||||
\input{parts/0 intro}
|
||||
\input{parts/1 cycle}
|
||||
|
||||
|
||||
% cycle notation
|
||||
% decomposition into transpositions
|
||||
% few more problems?
|
||||
|
||||
|
@ -44,7 +44,7 @@ Why do we define permutations as a \textit{bijective} map?
|
||||
|
||||
|
||||
We can visualize permutations with a diagram we'll call the \say{braid.}
|
||||
The arrows in the diagram denote the image of $f$ for each possible input.
|
||||
The arrows in this diagram denote the image of $f$ for each possible input.
|
||||
Two examples are below:
|
||||
|
||||
\vspace{2mm}
|
||||
@ -60,10 +60,10 @@ Two examples are below:
|
||||
\node (4b) at (2, -2) {4};
|
||||
\node (2b) at (3, -2) {2};
|
||||
|
||||
\draw[line width = 0.3mm, ->, ocyan] (1a.south) -- (1a.south |- 0, -0.5) -- (1b.north |- 0,-1) -- (1b.north);
|
||||
\draw[line width = 0.3mm, ->, ocyan] (2a.south) -- (2a.south |- 0, -0.5) -- (2b.north |- 0,-1) -- (2b.north);
|
||||
\draw[line width = 0.3mm, ->, ocyan] (3a.south) -- (3a.south |- 0, -0.5) -- (3b.north |- 0,-1) -- (3b.north);
|
||||
\draw[line width = 0.3mm, ->, ocyan] (4a.south) -- (4a.south |- 0, -0.5) -- (4b.north |- 0,-1) -- (4b.north);
|
||||
\line{1a}{1b}
|
||||
\line{2a}{2b}
|
||||
\line{3a}{3b}
|
||||
\line{4a}{4b}
|
||||
\end{tikzpicture}
|
||||
\hfill
|
||||
\begin{tikzpicture}[scale=0.5]
|
||||
@ -77,12 +77,14 @@ Two examples are below:
|
||||
\node (3b) at (2, -2) {3};
|
||||
\node (4b) at (3, -2) {4};
|
||||
|
||||
\draw[line width = 0.3mm, ->, ocyan] (1a.south) -- (1a.south |- 0, -0.5) -- (1b.north |- 0,-1) -- (1b.north);
|
||||
\draw[line width = 0.3mm, ->, ocyan] (2a.south) -- (2a.south |- 0, -0.5) -- (2b.north |- 0,-1) -- (2b.north);
|
||||
\draw[line width = 0.3mm, ->, ocyan] (3a.south) -- (3a.south |- 0, -0.5) -- (3b.north |- 0,-1) -- (3b.north);
|
||||
\draw[line width = 0.3mm, ->, ocyan] (4a.south) -- (4a.south |- 0, -0.5) -- (4b.north |- 0,-1) -- (4b.north);
|
||||
\line{1a}{1b}
|
||||
\line{2a}{2b}
|
||||
\line{3a}{3b}
|
||||
\line{4a}{4b}
|
||||
\end{tikzpicture}
|
||||
\hfill\null
|
||||
\vspace{2mm}
|
||||
|
||||
|
||||
Note that in all our examples thus far, the objects in our set have an implicit order.
|
||||
This is only for convenience. The elements of $\Omega$ are not ordered (it is a \textit{set}, after all),
|
||||
@ -113,10 +115,10 @@ The rightmost diagram uses arbitrary, meaningless labels.
|
||||
\node (3b) at (2, -2) {3};
|
||||
\node (4b) at (3, -2) {4};
|
||||
|
||||
\draw[line width = 0.3mm, ->, ocyan] (1a.south) -- (1a.south |- 0, -0.5) -- (1b.north |- 0,-1) -- (1b.north);
|
||||
\draw[line width = 0.3mm, ->, ocyan] (2a.south) -- (2a.south |- 0, -0.5) -- (2b.north |- 0,-1) -- (2b.north);
|
||||
\draw[line width = 0.3mm, ->, ocyan] (3a.south) -- (3a.south |- 0, -0.5) -- (3b.north |- 0,-1) -- (3b.north);
|
||||
\draw[line width = 0.3mm, ->, ocyan] (4a.south) -- (4a.south |- 0, -0.5) -- (4b.north |- 0,-1) -- (4b.north);
|
||||
\line{1a}{1b}
|
||||
\line{2a}{2b}
|
||||
\line{3a}{3b}
|
||||
\line{4a}{4b}
|
||||
\end{tikzpicture}
|
||||
\hfill
|
||||
\begin{tikzpicture}[scale=0.5]
|
||||
@ -130,10 +132,10 @@ The rightmost diagram uses arbitrary, meaningless labels.
|
||||
\node (3b) at (2, -2) {3};
|
||||
\node (2b) at (3, -2) {2};
|
||||
|
||||
\draw[line width = 0.3mm, ->, ocyan] (1a.south) -- (1a.south |- 0, -0.5) -- (1b.north |- 0,-1) -- (1b.north);
|
||||
\draw[line width = 0.3mm, ->, ocyan] (2a.south) -- (2a.south |- 0, -0.5) -- (2b.north |- 0,-1) -- (2b.north);
|
||||
\draw[line width = 0.3mm, ->, ocyan] (3a.south) -- (3a.south |- 0, -0.5) -- (3b.north |- 0,-1) -- (3b.north);
|
||||
\draw[line width = 0.3mm, ->, ocyan] (4a.south) -- (4a.south |- 0, -0.5) -- (4b.north |- 0,-1) -- (4b.north);
|
||||
\line{1a}{1b}
|
||||
\line{2a}{2b}
|
||||
\line{3a}{3b}
|
||||
\line{4a}{4b}
|
||||
\end{tikzpicture}
|
||||
\hfill
|
||||
\begin{tikzpicture}[scale=0.5]
|
||||
@ -147,12 +149,14 @@ The rightmost diagram uses arbitrary, meaningless labels.
|
||||
\node (3b) at (2, -2) {$\circledcirc$};
|
||||
\node (4b) at (3, -2) {$\boxdot$};
|
||||
|
||||
\draw[line width = 0.3mm, ->, ocyan] (1a.south) -- (1a.south |- 0, -0.5) -- (1b.north |- 0,-1) -- (1b.north);
|
||||
\draw[line width = 0.3mm, ->, ocyan] (2a.south) -- (2a.south |- 0, -0.5) -- (2b.north |- 0,-1) -- (2b.north);
|
||||
\draw[line width = 0.3mm, ->, ocyan] (3a.south) -- (3a.south |- 0, -0.5) -- (3b.north |- 0,-1) -- (3b.north);
|
||||
\draw[line width = 0.3mm, ->, ocyan] (4a.south) -- (4a.south |- 0, -0.5) -- (4b.north |- 0,-1) -- (4b.north);
|
||||
\line{1a}{1b}
|
||||
\line{2a}{2b}
|
||||
\line{3a}{3b}
|
||||
\line{4a}{4b}
|
||||
\end{tikzpicture}
|
||||
\hfill\null
|
||||
\vspace{2mm}
|
||||
|
||||
|
||||
It shouldn't be hard to see that despite the different \say{output} order (2134 and 1432), \par
|
||||
the same permutation is depicted in all three diagrams. This example demonstrates two things:
|
||||
@ -167,7 +171,6 @@ the same permutation is depicted in all three diagrams. This example demonstrate
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
\vspace{1cm}
|
||||
|
||||
Why, then, do we order our elements when we talk about permutations? As noted before, this is for convenience.
|
||||
If we assign a natural order to the elements of $\Omega$ (say, 1234), we can identify permutations by simply listing
|
||||
@ -182,7 +185,7 @@ Draw braids for $[4123]$ and $[2341]$.
|
||||
|
||||
|
||||
Finally, note that permutations (as defined in \ref{permadef}) are \textit{not} \say{orderings of a certain set.} \par
|
||||
They are defined as \textit{bijective maps}, which can be \textit{thought of} as orderings. \par
|
||||
They are defined as \textit{bijective maps}, which can be written as orderings of a given array. \par
|
||||
Remember: permutations are verbs!
|
||||
|
||||
\pagebreak
|
387
Advanced/Symmetric Group/parts/1 cycle.tex
Executable file
387
Advanced/Symmetric Group/parts/1 cycle.tex
Executable file
@ -0,0 +1,387 @@
|
||||
|
||||
\section{Cycle Notation}
|
||||
|
||||
\definition{}
|
||||
The \textit{order} of a permutation $f$ is the smallest $n$ so that $f^n(x) = x$ for all $x$. \par
|
||||
In other words, if we repeat this permutation $n$ times, we get back to where we started.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
For example, consider $[2134]$. This permutation has order $2$, as we clearly see below:
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=0.5]
|
||||
\node (1a) at (0, 0.5) {1};
|
||||
\node (2a) at (1, 0.5) {2};
|
||||
\node (3a) at (2, 0.5) {3};
|
||||
\node (4a) at (3, 0.5) {4};
|
||||
|
||||
\node (2b) at (0, -2) {2};
|
||||
\node (1b) at (1, -2) {1};
|
||||
\node (3b) at (2, -2) {3};
|
||||
\node (4b) at (3, -2) {4};
|
||||
|
||||
\node (1c) at (0, -4.5) {1};
|
||||
\node (2c) at (1, -4.5) {2};
|
||||
\node (3c) at (2, -4.5) {3};
|
||||
\node (4c) at (3, -4.5) {4};
|
||||
|
||||
\line{1a}{1b}
|
||||
\line{2a}{2b}
|
||||
\line{3a}{3b}
|
||||
\line{4a}{4b}
|
||||
\line{1b}{1c}
|
||||
\line{2b}{2c}
|
||||
\line{3b}{3c}
|
||||
\line{4b}{4c}
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
Of course, swapping the first two elements twice results in the identity map. \par
|
||||
$[2134]$ happens to be its own inverse. Also, the order of $[1234]$ is (of course) one.
|
||||
|
||||
|
||||
\problem{}
|
||||
What is the order of $[2314]$? \par
|
||||
How about $[4321]$? \par
|
||||
\note[Note]{You shouldn't need to draw any braids to solve this problem.}
|
||||
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{Bonus}
|
||||
Show that all permutations (on a finite set) have a well-defined order. \par
|
||||
In other words, show that there is always an integer $n$ so that $f^n(x) = x$.
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
As you may have noticed, the square-bracket notation we've been using thus far is a bit unwieldy.
|
||||
Permutations are verbs---but we've been referring to them using a noun (namely, their output when
|
||||
applied to an ordered sequence of numbers). Our notation fails to capture the meaning of the
|
||||
underlying object.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
Think about it: is the permutation $[1234]$ different than the permutation $[12345]$? \par
|
||||
Indeed, these permutations operate on different sets---but they are both the identity! \par
|
||||
What should we do if we want to talk about the identity on $\{1, 2, ..., 10\}$?
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
We need something better.
|
||||
|
||||
|
||||
|
||||
|
||||
\definition{}
|
||||
Any permutation is composed of a number of \textit{cycles}. \par
|
||||
|
||||
For example, consider the permutation $[2134]$, which consists of one two-cycle: $1 \to 2 \to 1$ \par
|
||||
\note[Note]{$3 \to 3$ and $4 \to 4$ are also cycles, but we'll ignore them. One-cycles aren't aren't interesting.}
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=0.5]
|
||||
\node (1) at (0, 0) {1};
|
||||
\node (2) at (1, 0) {2};
|
||||
\node (3) at (2, 0) {3};
|
||||
\node (4) at (3, 0) {4};
|
||||
|
||||
\draw[line width = 0.3mm, ->, ocyan]
|
||||
(1)
|
||||
-- ($(1) + (0,-1)$)
|
||||
-- ($(2) + (0,-1)$)
|
||||
-- (2);
|
||||
|
||||
\draw[line width = 0.3mm, ->, ocyan]
|
||||
(2)
|
||||
-- ($(2) + (0, 1)$)
|
||||
-- ($(1) + (0, 1)$)
|
||||
-- (1);
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
|
||||
The permutation $[431265]$ is a bit more interesting---it contains of two cycles: \par
|
||||
($1 \to 3 \to 2 \to 4 \to 1$ and $5 \to 6 \to 5$)
|
||||
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=0.5]
|
||||
\node (1) at (0, 0) {1};
|
||||
\node (2) at (1, 0) {2};
|
||||
\node (3) at (2, 0) {3};
|
||||
\node (4) at (3, 0) {4};
|
||||
\node (5) at (4, 0) {5};
|
||||
\node (6) at (5, 0) {6};
|
||||
|
||||
\draw[line width = 0.3mm, ->, ocyan]
|
||||
(3)
|
||||
-- ($(3) + (0,-1)$)
|
||||
-- ($(2) + (0,-1)$)
|
||||
-- (2);
|
||||
|
||||
\draw[line width = 0.3mm, ->, ocyan]
|
||||
(2)
|
||||
-- ($(2) + (0,1.5)$)
|
||||
-- ($(4) + (0,1.5)$)
|
||||
-- (4);
|
||||
|
||||
\draw[line width = 0.3mm, ->, ocyan]
|
||||
(4)
|
||||
-- ($(4) + (0,-1.5)$)
|
||||
-- ($(1) + (0,-1.5)$)
|
||||
-- (1);
|
||||
|
||||
\draw[line width = 0.3mm, ->, ocyan]
|
||||
(1)
|
||||
-- ($(1) + (0,1)$)
|
||||
-- ($(3) + (0,1)$)
|
||||
-- (3);
|
||||
|
||||
\draw[line width = 0.3mm, ->, ogreen]
|
||||
(5)
|
||||
-- ($(5) + (0,-1)$)
|
||||
-- ($(6) + (0,-1)$)
|
||||
-- (6);
|
||||
|
||||
\draw[line width = 0.3mm, ->, ogreen]
|
||||
(6)
|
||||
-- ($(6) + (0,1)$)
|
||||
-- ($(5) + (0,1)$)
|
||||
-- (5);
|
||||
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
Find all cycles in $[5342761]$.
|
||||
|
||||
\begin{solution}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=0.5]
|
||||
\node (1) at (0, 0) {1};
|
||||
\node (2) at (1, 0) {2};
|
||||
\node (3) at (2, 0) {3};
|
||||
\node (4) at (3, 0) {4};
|
||||
\node (5) at (4, 0) {5};
|
||||
\node (6) at (5, 0) {6};
|
||||
\node (7) at (6, 0) {7};
|
||||
|
||||
\draw[line width = 0.3mm, ->, ocyan]
|
||||
(1)
|
||||
-- ($(1) + (0,2)$)
|
||||
-- ($(7) + (0,2)$)
|
||||
-- (7);
|
||||
|
||||
\draw[line width = 0.3mm, ->, ocyan]
|
||||
(7)
|
||||
-- ($(7) + (0,-1.5)$)
|
||||
-- ($(5) + (0,-1.5)$)
|
||||
-- (5);
|
||||
|
||||
\draw[line width = 0.3mm, ->, ocyan]
|
||||
(5)
|
||||
-- ($(5) + (0,1.5)$)
|
||||
-- ($(1) + (0.5,1.5)$)
|
||||
-- ($(1) + (0.5,-1)$)
|
||||
-- ($(1) + (0,-1)$)
|
||||
-- (1);
|
||||
|
||||
\draw[line width = 0.3mm, ->, ogreen]
|
||||
(2)
|
||||
-- ($(2) + (0,-1.5)$)
|
||||
-- ($(4) + (0,-1.5)$)
|
||||
-- (4);
|
||||
|
||||
\draw[line width = 0.3mm, ->, ogreen]
|
||||
(4)
|
||||
-- ($(4) + (0,1)$)
|
||||
-- ($(3) + (0,1)$)
|
||||
-- (3);
|
||||
|
||||
\draw[line width = 0.3mm, ->, ogreen]
|
||||
(3)
|
||||
-- ($(3) + (0,-1)$)
|
||||
-- ($(2) + (0.5,-1)$)
|
||||
-- ($(2) + (0.5,1)$)
|
||||
-- ($(2) + (0,1)$)
|
||||
-- (2);
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
\problem{}
|
||||
What permutation (on five objects) consists of the cycles $3 \to 5 \to 3$ and $1 \to 2 \to 4 \to 1$?
|
||||
|
||||
|
||||
\begin{solution}
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=0.5]
|
||||
\node (1) at (0, 0) {1};
|
||||
\node (2) at (1, 0) {2};
|
||||
\node (3) at (2, 0) {3};
|
||||
\node (4) at (3, 0) {4};
|
||||
\node (5) at (4, 0) {5};
|
||||
|
||||
\draw[line width = 0.3mm, ->, ocyan]
|
||||
(3)
|
||||
-- ($(3) + (0,1)$)
|
||||
-- ($(5) + (0,1)$)
|
||||
-- (5);
|
||||
|
||||
\draw[line width = 0.3mm, ->, ocyan]
|
||||
(5)
|
||||
-- ($(5) + (0,-1)$)
|
||||
-- ($(3) + (0,-1)$)
|
||||
-- (3);
|
||||
|
||||
\draw[line width = 0.3mm, ->, ogreen]
|
||||
(1)
|
||||
-- ($(1) + (0,-1)$)
|
||||
-- ($(2) + (0,-1)$)
|
||||
-- (2);
|
||||
|
||||
\draw[line width = 0.3mm, ->, ogreen]
|
||||
(2)
|
||||
-- ($(2) + (0,1.5)$)
|
||||
-- ($(4) + (0,1.5)$)
|
||||
-- (4);
|
||||
|
||||
\draw[line width = 0.3mm, ->, ogreen]
|
||||
(4)
|
||||
-- ($(4) + (0,-1.5)$)
|
||||
-- ($(1) + (0.5,-1.5)$)
|
||||
-- ($(1) + (0.5,1)$)
|
||||
-- ($(1) + (0,1)$)
|
||||
-- (1);
|
||||
\end{tikzpicture}
|
||||
|
||||
This is $[41523]$
|
||||
\end{center}
|
||||
\end{solution}
|
||||
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\definition{}
|
||||
We now have a solution to our problem of notation.
|
||||
Instead of referring to permutations using their output, we will refer to them using their \textit{cycles}.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
For example, we'll write $[2134]$ as $(12)$, which denotes the cycle $1 \to 2 \to 1$:
|
||||
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=0.5]
|
||||
\node (1) at (0, 0) {1};
|
||||
\node (2) at (1, 0) {2};
|
||||
\node (3) at (2, 0) {3};
|
||||
\node (4) at (3, 0) {4};
|
||||
|
||||
\draw[line width = 0.3mm, ->, ocyan]
|
||||
(1)
|
||||
-- ($(1) + (0,-1)$)
|
||||
-- ($(2) + (0,-1)$)
|
||||
-- (2);
|
||||
|
||||
\draw[line width = 0.3mm, ->, ocyan]
|
||||
(2)
|
||||
-- ($(2) + (0, 1)$)
|
||||
-- ($(1) + (0, 1)$)
|
||||
-- (1);
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
|
||||
|
||||
As another example, $[431265]$ is $(1324)(56)$ in cycle notation. \par
|
||||
Note that we write $[431265]$ as a \textit{composition} of two cycles: \par
|
||||
applying the permutation $[431265]$ is the same as applying $(1324)$, then applying $(56)$.
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=0.5]
|
||||
\node (1) at (0, 0) {1};
|
||||
\node (2) at (1, 0) {2};
|
||||
\node (3) at (2, 0) {3};
|
||||
\node (4) at (3, 0) {4};
|
||||
\node (5) at (4, 0) {5};
|
||||
\node (6) at (5, 0) {6};
|
||||
|
||||
\draw[line width = 0.3mm, ->, ocyan]
|
||||
(3)
|
||||
-- ($(3) + (0,-1)$)
|
||||
-- ($(2) + (0,-1)$)
|
||||
-- (2);
|
||||
|
||||
\draw[line width = 0.3mm, ->, ocyan]
|
||||
(2)
|
||||
-- ($(2) + (0,1.5)$)
|
||||
-- ($(4) + (0,1.5)$)
|
||||
-- (4);
|
||||
|
||||
\draw[line width = 0.3mm, ->, ocyan]
|
||||
(4)
|
||||
-- ($(4) + (0,-1.5)$)
|
||||
-- ($(1) + (0,-1.5)$)
|
||||
-- (1);
|
||||
|
||||
\draw[line width = 0.3mm, ->, ocyan]
|
||||
(1)
|
||||
-- ($(1) + (0,1)$)
|
||||
-- ($(3) + (0,1)$)
|
||||
-- (3);
|
||||
|
||||
\draw[line width = 0.3mm, ->, ogreen]
|
||||
(5)
|
||||
-- ($(5) + (0,-1)$)
|
||||
-- ($(6) + (0,-1)$)
|
||||
-- (6);
|
||||
|
||||
\draw[line width = 0.3mm, ->, ogreen]
|
||||
(6)
|
||||
-- ($(6) + (0,1)$)
|
||||
-- ($(5) + (0,1)$)
|
||||
-- (5);
|
||||
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
|
||||
\problem{}
|
||||
Convince yourself that disjoint cycles commute. \par
|
||||
That is, $(1324)(56) = (56)(1324)$ since $(1324)$ and $(56)$ do not overlap.
|
||||
|
||||
\problem{}
|
||||
Write the following in square-bracket notation.
|
||||
\begin{itemize}
|
||||
\item $(12)$ \tab~\tab on a set of 2 elements
|
||||
\item $(12)(435)$ \tab on a set of 5 elements
|
||||
\vspace{2mm}
|
||||
\item $(321)$ \tab~\tab on a set of 3 elements
|
||||
\item $(321)$ \tab~\tab on a set of 6 elements
|
||||
\vspace{2mm}
|
||||
\item $(1234)$ \tab on a set of 4 elements
|
||||
\item $(3412)$ \tab on a set of 4 elements
|
||||
\end{itemize}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Write the following in square-bracket notation.
|
||||
Be careful.
|
||||
\begin{itemize}
|
||||
\item $(13)(243)$ \tab on a set of 4 elements
|
||||
\item $(243)(13)$ \tab on a set of 4 elements
|
||||
\end{itemize}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
Loading…
x
Reference in New Issue
Block a user