Added cycle notation

This commit is contained in:
Mark 2023-12-18 10:55:08 -08:00
parent 0319c52248
commit bd88b894a1
Signed by: Mark
GPG Key ID: C6D63995FE72FD80
3 changed files with 423 additions and 25 deletions

View File

@ -5,7 +5,7 @@
singlenumbering singlenumbering
]{../../resources/ormc_handout} ]{../../resources/ormc_handout}
\usepackage{../../resources/macros} \usepackage{../../resources/macros}
\usetikzlibrary{calc}
\uptitlel{Advanced 2} \uptitlel{Advanced 2}
\uptitler{Winter 2023} \uptitler{Winter 2023}
@ -14,14 +14,22 @@
\def\line#1#2{
\draw[line width = 0.3mm, ->, ocyan]
(#1)
-- ($(#1) + (0, -1)$)
-- ($(#2) + (0,1)$)
-- (#2);
}
\begin{document} \begin{document}
\maketitle \maketitle
\input{parts/0 intro} \input{parts/0 intro}
\input{parts/1 cycle}
% cycle notation
% decomposition into transpositions % decomposition into transpositions
% few more problems? % few more problems?

View File

@ -44,7 +44,7 @@ Why do we define permutations as a \textit{bijective} map?
We can visualize permutations with a diagram we'll call the \say{braid.} We can visualize permutations with a diagram we'll call the \say{braid.}
The arrows in the diagram denote the image of $f$ for each possible input. The arrows in this diagram denote the image of $f$ for each possible input.
Two examples are below: Two examples are below:
\vspace{2mm} \vspace{2mm}
@ -60,10 +60,10 @@ Two examples are below:
\node (4b) at (2, -2) {4}; \node (4b) at (2, -2) {4};
\node (2b) at (3, -2) {2}; \node (2b) at (3, -2) {2};
\draw[line width = 0.3mm, ->, ocyan] (1a.south) -- (1a.south |- 0, -0.5) -- (1b.north |- 0,-1) -- (1b.north); \line{1a}{1b}
\draw[line width = 0.3mm, ->, ocyan] (2a.south) -- (2a.south |- 0, -0.5) -- (2b.north |- 0,-1) -- (2b.north); \line{2a}{2b}
\draw[line width = 0.3mm, ->, ocyan] (3a.south) -- (3a.south |- 0, -0.5) -- (3b.north |- 0,-1) -- (3b.north); \line{3a}{3b}
\draw[line width = 0.3mm, ->, ocyan] (4a.south) -- (4a.south |- 0, -0.5) -- (4b.north |- 0,-1) -- (4b.north); \line{4a}{4b}
\end{tikzpicture} \end{tikzpicture}
\hfill \hfill
\begin{tikzpicture}[scale=0.5] \begin{tikzpicture}[scale=0.5]
@ -77,12 +77,14 @@ Two examples are below:
\node (3b) at (2, -2) {3}; \node (3b) at (2, -2) {3};
\node (4b) at (3, -2) {4}; \node (4b) at (3, -2) {4};
\draw[line width = 0.3mm, ->, ocyan] (1a.south) -- (1a.south |- 0, -0.5) -- (1b.north |- 0,-1) -- (1b.north); \line{1a}{1b}
\draw[line width = 0.3mm, ->, ocyan] (2a.south) -- (2a.south |- 0, -0.5) -- (2b.north |- 0,-1) -- (2b.north); \line{2a}{2b}
\draw[line width = 0.3mm, ->, ocyan] (3a.south) -- (3a.south |- 0, -0.5) -- (3b.north |- 0,-1) -- (3b.north); \line{3a}{3b}
\draw[line width = 0.3mm, ->, ocyan] (4a.south) -- (4a.south |- 0, -0.5) -- (4b.north |- 0,-1) -- (4b.north); \line{4a}{4b}
\end{tikzpicture} \end{tikzpicture}
\hfill\null \hfill\null
\vspace{2mm}
Note that in all our examples thus far, the objects in our set have an implicit order. Note that in all our examples thus far, the objects in our set have an implicit order.
This is only for convenience. The elements of $\Omega$ are not ordered (it is a \textit{set}, after all), This is only for convenience. The elements of $\Omega$ are not ordered (it is a \textit{set}, after all),
@ -113,10 +115,10 @@ The rightmost diagram uses arbitrary, meaningless labels.
\node (3b) at (2, -2) {3}; \node (3b) at (2, -2) {3};
\node (4b) at (3, -2) {4}; \node (4b) at (3, -2) {4};
\draw[line width = 0.3mm, ->, ocyan] (1a.south) -- (1a.south |- 0, -0.5) -- (1b.north |- 0,-1) -- (1b.north); \line{1a}{1b}
\draw[line width = 0.3mm, ->, ocyan] (2a.south) -- (2a.south |- 0, -0.5) -- (2b.north |- 0,-1) -- (2b.north); \line{2a}{2b}
\draw[line width = 0.3mm, ->, ocyan] (3a.south) -- (3a.south |- 0, -0.5) -- (3b.north |- 0,-1) -- (3b.north); \line{3a}{3b}
\draw[line width = 0.3mm, ->, ocyan] (4a.south) -- (4a.south |- 0, -0.5) -- (4b.north |- 0,-1) -- (4b.north); \line{4a}{4b}
\end{tikzpicture} \end{tikzpicture}
\hfill \hfill
\begin{tikzpicture}[scale=0.5] \begin{tikzpicture}[scale=0.5]
@ -130,10 +132,10 @@ The rightmost diagram uses arbitrary, meaningless labels.
\node (3b) at (2, -2) {3}; \node (3b) at (2, -2) {3};
\node (2b) at (3, -2) {2}; \node (2b) at (3, -2) {2};
\draw[line width = 0.3mm, ->, ocyan] (1a.south) -- (1a.south |- 0, -0.5) -- (1b.north |- 0,-1) -- (1b.north); \line{1a}{1b}
\draw[line width = 0.3mm, ->, ocyan] (2a.south) -- (2a.south |- 0, -0.5) -- (2b.north |- 0,-1) -- (2b.north); \line{2a}{2b}
\draw[line width = 0.3mm, ->, ocyan] (3a.south) -- (3a.south |- 0, -0.5) -- (3b.north |- 0,-1) -- (3b.north); \line{3a}{3b}
\draw[line width = 0.3mm, ->, ocyan] (4a.south) -- (4a.south |- 0, -0.5) -- (4b.north |- 0,-1) -- (4b.north); \line{4a}{4b}
\end{tikzpicture} \end{tikzpicture}
\hfill \hfill
\begin{tikzpicture}[scale=0.5] \begin{tikzpicture}[scale=0.5]
@ -147,12 +149,14 @@ The rightmost diagram uses arbitrary, meaningless labels.
\node (3b) at (2, -2) {$\circledcirc$}; \node (3b) at (2, -2) {$\circledcirc$};
\node (4b) at (3, -2) {$\boxdot$}; \node (4b) at (3, -2) {$\boxdot$};
\draw[line width = 0.3mm, ->, ocyan] (1a.south) -- (1a.south |- 0, -0.5) -- (1b.north |- 0,-1) -- (1b.north); \line{1a}{1b}
\draw[line width = 0.3mm, ->, ocyan] (2a.south) -- (2a.south |- 0, -0.5) -- (2b.north |- 0,-1) -- (2b.north); \line{2a}{2b}
\draw[line width = 0.3mm, ->, ocyan] (3a.south) -- (3a.south |- 0, -0.5) -- (3b.north |- 0,-1) -- (3b.north); \line{3a}{3b}
\draw[line width = 0.3mm, ->, ocyan] (4a.south) -- (4a.south |- 0, -0.5) -- (4b.north |- 0,-1) -- (4b.north); \line{4a}{4b}
\end{tikzpicture} \end{tikzpicture}
\hfill\null \hfill\null
\vspace{2mm}
It shouldn't be hard to see that despite the different \say{output} order (2134 and 1432), \par It shouldn't be hard to see that despite the different \say{output} order (2134 and 1432), \par
the same permutation is depicted in all three diagrams. This example demonstrates two things: the same permutation is depicted in all three diagrams. This example demonstrates two things:
@ -167,7 +171,6 @@ the same permutation is depicted in all three diagrams. This example demonstrate
\vspace{2mm} \vspace{2mm}
\vspace{1cm}
Why, then, do we order our elements when we talk about permutations? As noted before, this is for convenience. Why, then, do we order our elements when we talk about permutations? As noted before, this is for convenience.
If we assign a natural order to the elements of $\Omega$ (say, 1234), we can identify permutations by simply listing If we assign a natural order to the elements of $\Omega$ (say, 1234), we can identify permutations by simply listing
@ -182,7 +185,7 @@ Draw braids for $[4123]$ and $[2341]$.
Finally, note that permutations (as defined in \ref{permadef}) are \textit{not} \say{orderings of a certain set.} \par Finally, note that permutations (as defined in \ref{permadef}) are \textit{not} \say{orderings of a certain set.} \par
They are defined as \textit{bijective maps}, which can be \textit{thought of} as orderings. \par They are defined as \textit{bijective maps}, which can be written as orderings of a given array. \par
Remember: permutations are verbs! Remember: permutations are verbs!
\pagebreak \pagebreak

View File

@ -0,0 +1,387 @@
\section{Cycle Notation}
\definition{}
The \textit{order} of a permutation $f$ is the smallest $n$ so that $f^n(x) = x$ for all $x$. \par
In other words, if we repeat this permutation $n$ times, we get back to where we started.
\vspace{2mm}
For example, consider $[2134]$. This permutation has order $2$, as we clearly see below:
\begin{center}
\begin{tikzpicture}[scale=0.5]
\node (1a) at (0, 0.5) {1};
\node (2a) at (1, 0.5) {2};
\node (3a) at (2, 0.5) {3};
\node (4a) at (3, 0.5) {4};
\node (2b) at (0, -2) {2};
\node (1b) at (1, -2) {1};
\node (3b) at (2, -2) {3};
\node (4b) at (3, -2) {4};
\node (1c) at (0, -4.5) {1};
\node (2c) at (1, -4.5) {2};
\node (3c) at (2, -4.5) {3};
\node (4c) at (3, -4.5) {4};
\line{1a}{1b}
\line{2a}{2b}
\line{3a}{3b}
\line{4a}{4b}
\line{1b}{1c}
\line{2b}{2c}
\line{3b}{3c}
\line{4b}{4c}
\end{tikzpicture}
\end{center}
Of course, swapping the first two elements twice results in the identity map. \par
$[2134]$ happens to be its own inverse. Also, the order of $[1234]$ is (of course) one.
\problem{}
What is the order of $[2314]$? \par
How about $[4321]$? \par
\note[Note]{You shouldn't need to draw any braids to solve this problem.}
\vfill
\problem{Bonus}
Show that all permutations (on a finite set) have a well-defined order. \par
In other words, show that there is always an integer $n$ so that $f^n(x) = x$.
\vfill
\pagebreak
As you may have noticed, the square-bracket notation we've been using thus far is a bit unwieldy.
Permutations are verbs---but we've been referring to them using a noun (namely, their output when
applied to an ordered sequence of numbers). Our notation fails to capture the meaning of the
underlying object.
\vspace{2mm}
Think about it: is the permutation $[1234]$ different than the permutation $[12345]$? \par
Indeed, these permutations operate on different sets---but they are both the identity! \par
What should we do if we want to talk about the identity on $\{1, 2, ..., 10\}$?
\vspace{2mm}
We need something better.
\definition{}
Any permutation is composed of a number of \textit{cycles}. \par
For example, consider the permutation $[2134]$, which consists of one two-cycle: $1 \to 2 \to 1$ \par
\note[Note]{$3 \to 3$ and $4 \to 4$ are also cycles, but we'll ignore them. One-cycles aren't aren't interesting.}
\begin{center}
\begin{tikzpicture}[scale=0.5]
\node (1) at (0, 0) {1};
\node (2) at (1, 0) {2};
\node (3) at (2, 0) {3};
\node (4) at (3, 0) {4};
\draw[line width = 0.3mm, ->, ocyan]
(1)
-- ($(1) + (0,-1)$)
-- ($(2) + (0,-1)$)
-- (2);
\draw[line width = 0.3mm, ->, ocyan]
(2)
-- ($(2) + (0, 1)$)
-- ($(1) + (0, 1)$)
-- (1);
\end{tikzpicture}
\end{center}
The permutation $[431265]$ is a bit more interesting---it contains of two cycles: \par
($1 \to 3 \to 2 \to 4 \to 1$ and $5 \to 6 \to 5$)
\begin{center}
\begin{tikzpicture}[scale=0.5]
\node (1) at (0, 0) {1};
\node (2) at (1, 0) {2};
\node (3) at (2, 0) {3};
\node (4) at (3, 0) {4};
\node (5) at (4, 0) {5};
\node (6) at (5, 0) {6};
\draw[line width = 0.3mm, ->, ocyan]
(3)
-- ($(3) + (0,-1)$)
-- ($(2) + (0,-1)$)
-- (2);
\draw[line width = 0.3mm, ->, ocyan]
(2)
-- ($(2) + (0,1.5)$)
-- ($(4) + (0,1.5)$)
-- (4);
\draw[line width = 0.3mm, ->, ocyan]
(4)
-- ($(4) + (0,-1.5)$)
-- ($(1) + (0,-1.5)$)
-- (1);
\draw[line width = 0.3mm, ->, ocyan]
(1)
-- ($(1) + (0,1)$)
-- ($(3) + (0,1)$)
-- (3);
\draw[line width = 0.3mm, ->, ogreen]
(5)
-- ($(5) + (0,-1)$)
-- ($(6) + (0,-1)$)
-- (6);
\draw[line width = 0.3mm, ->, ogreen]
(6)
-- ($(6) + (0,1)$)
-- ($(5) + (0,1)$)
-- (5);
\end{tikzpicture}
\end{center}
\problem{}
Find all cycles in $[5342761]$.
\begin{solution}
\begin{center}
\begin{tikzpicture}[scale=0.5]
\node (1) at (0, 0) {1};
\node (2) at (1, 0) {2};
\node (3) at (2, 0) {3};
\node (4) at (3, 0) {4};
\node (5) at (4, 0) {5};
\node (6) at (5, 0) {6};
\node (7) at (6, 0) {7};
\draw[line width = 0.3mm, ->, ocyan]
(1)
-- ($(1) + (0,2)$)
-- ($(7) + (0,2)$)
-- (7);
\draw[line width = 0.3mm, ->, ocyan]
(7)
-- ($(7) + (0,-1.5)$)
-- ($(5) + (0,-1.5)$)
-- (5);
\draw[line width = 0.3mm, ->, ocyan]
(5)
-- ($(5) + (0,1.5)$)
-- ($(1) + (0.5,1.5)$)
-- ($(1) + (0.5,-1)$)
-- ($(1) + (0,-1)$)
-- (1);
\draw[line width = 0.3mm, ->, ogreen]
(2)
-- ($(2) + (0,-1.5)$)
-- ($(4) + (0,-1.5)$)
-- (4);
\draw[line width = 0.3mm, ->, ogreen]
(4)
-- ($(4) + (0,1)$)
-- ($(3) + (0,1)$)
-- (3);
\draw[line width = 0.3mm, ->, ogreen]
(3)
-- ($(3) + (0,-1)$)
-- ($(2) + (0.5,-1)$)
-- ($(2) + (0.5,1)$)
-- ($(2) + (0,1)$)
-- (2);
\end{tikzpicture}
\end{center}
\end{solution}
\vfill
\problem{}
What permutation (on five objects) consists of the cycles $3 \to 5 \to 3$ and $1 \to 2 \to 4 \to 1$?
\begin{solution}
\begin{center}
\begin{tikzpicture}[scale=0.5]
\node (1) at (0, 0) {1};
\node (2) at (1, 0) {2};
\node (3) at (2, 0) {3};
\node (4) at (3, 0) {4};
\node (5) at (4, 0) {5};
\draw[line width = 0.3mm, ->, ocyan]
(3)
-- ($(3) + (0,1)$)
-- ($(5) + (0,1)$)
-- (5);
\draw[line width = 0.3mm, ->, ocyan]
(5)
-- ($(5) + (0,-1)$)
-- ($(3) + (0,-1)$)
-- (3);
\draw[line width = 0.3mm, ->, ogreen]
(1)
-- ($(1) + (0,-1)$)
-- ($(2) + (0,-1)$)
-- (2);
\draw[line width = 0.3mm, ->, ogreen]
(2)
-- ($(2) + (0,1.5)$)
-- ($(4) + (0,1.5)$)
-- (4);
\draw[line width = 0.3mm, ->, ogreen]
(4)
-- ($(4) + (0,-1.5)$)
-- ($(1) + (0.5,-1.5)$)
-- ($(1) + (0.5,1)$)
-- ($(1) + (0,1)$)
-- (1);
\end{tikzpicture}
This is $[41523]$
\end{center}
\end{solution}
\vfill
\pagebreak
\definition{}
We now have a solution to our problem of notation.
Instead of referring to permutations using their output, we will refer to them using their \textit{cycles}.
\vspace{2mm}
For example, we'll write $[2134]$ as $(12)$, which denotes the cycle $1 \to 2 \to 1$:
\begin{center}
\begin{tikzpicture}[scale=0.5]
\node (1) at (0, 0) {1};
\node (2) at (1, 0) {2};
\node (3) at (2, 0) {3};
\node (4) at (3, 0) {4};
\draw[line width = 0.3mm, ->, ocyan]
(1)
-- ($(1) + (0,-1)$)
-- ($(2) + (0,-1)$)
-- (2);
\draw[line width = 0.3mm, ->, ocyan]
(2)
-- ($(2) + (0, 1)$)
-- ($(1) + (0, 1)$)
-- (1);
\end{tikzpicture}
\end{center}
As another example, $[431265]$ is $(1324)(56)$ in cycle notation. \par
Note that we write $[431265]$ as a \textit{composition} of two cycles: \par
applying the permutation $[431265]$ is the same as applying $(1324)$, then applying $(56)$.
\begin{center}
\begin{tikzpicture}[scale=0.5]
\node (1) at (0, 0) {1};
\node (2) at (1, 0) {2};
\node (3) at (2, 0) {3};
\node (4) at (3, 0) {4};
\node (5) at (4, 0) {5};
\node (6) at (5, 0) {6};
\draw[line width = 0.3mm, ->, ocyan]
(3)
-- ($(3) + (0,-1)$)
-- ($(2) + (0,-1)$)
-- (2);
\draw[line width = 0.3mm, ->, ocyan]
(2)
-- ($(2) + (0,1.5)$)
-- ($(4) + (0,1.5)$)
-- (4);
\draw[line width = 0.3mm, ->, ocyan]
(4)
-- ($(4) + (0,-1.5)$)
-- ($(1) + (0,-1.5)$)
-- (1);
\draw[line width = 0.3mm, ->, ocyan]
(1)
-- ($(1) + (0,1)$)
-- ($(3) + (0,1)$)
-- (3);
\draw[line width = 0.3mm, ->, ogreen]
(5)
-- ($(5) + (0,-1)$)
-- ($(6) + (0,-1)$)
-- (6);
\draw[line width = 0.3mm, ->, ogreen]
(6)
-- ($(6) + (0,1)$)
-- ($(5) + (0,1)$)
-- (5);
\end{tikzpicture}
\end{center}
\problem{}
Convince yourself that disjoint cycles commute. \par
That is, $(1324)(56) = (56)(1324)$ since $(1324)$ and $(56)$ do not overlap.
\problem{}
Write the following in square-bracket notation.
\begin{itemize}
\item $(12)$ \tab~\tab on a set of 2 elements
\item $(12)(435)$ \tab on a set of 5 elements
\vspace{2mm}
\item $(321)$ \tab~\tab on a set of 3 elements
\item $(321)$ \tab~\tab on a set of 6 elements
\vspace{2mm}
\item $(1234)$ \tab on a set of 4 elements
\item $(3412)$ \tab on a set of 4 elements
\end{itemize}
\vfill
\problem{}
Write the following in square-bracket notation.
Be careful.
\begin{itemize}
\item $(13)(243)$ \tab on a set of 4 elements
\item $(243)(13)$ \tab on a set of 4 elements
\end{itemize}
\vfill
\pagebreak