Finished cryptography handout
This commit is contained in:
@ -45,55 +45,11 @@ What is the smallest group we can create?
|
||||
|
||||
Verifying that the trivial group is a group is trivial.
|
||||
\end{solution}
|
||||
\vfill
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
%\problem{}
|
||||
%Show that a group has exactly one identity element.
|
||||
%\vfill
|
||||
|
||||
%\problem{}
|
||||
%Show that each element in a group has exactly one inverse.
|
||||
%\vfill
|
||||
|
||||
%\problem{}
|
||||
%Show that $(\mathbb{Z}_n^\times, \times)$ is a group for any $n \in \mathbb{Z}^+$.
|
||||
%\vfill
|
||||
|
||||
%\problem{}
|
||||
%Let $(G, \ast)$ be a group and $a, b, c \in G$. Show that...
|
||||
%\begin{itemize}
|
||||
% \item $a \ast b = a \ast c \implies b = c$
|
||||
% \item $b \ast a = c \ast a \implies b = c$
|
||||
%\end{itemize}
|
||||
%This means that we can \say{cancel} operations in groups, much like we do in algebra.
|
||||
%\vfill
|
||||
%\pagebreak
|
||||
|
||||
|
||||
|
||||
|
||||
% \problem{}
|
||||
% Let $G$ be the set of all bijections $A \to A$. \par
|
||||
% Let $\circ$ be the usual composition operator. \par
|
||||
% Is $(G, \circ)$ a group?
|
||||
%
|
||||
% \vfill
|
||||
%
|
||||
% \definition{}
|
||||
% Note that our definition of a group does \textbf{not} state that $a \ast b = b \ast a$. \par
|
||||
% Many interesting groups do not have this property.
|
||||
% Those that do are called \textit{abelian} groups. \par
|
||||
%
|
||||
% \vspace{2mm}
|
||||
%
|
||||
% One example of a non-abelian group is the set of invertible 2x2 matrices under matrix multiplication. In this handout, all % groups are abelian.
|
||||
%
|
||||
%
|
||||
%
|
||||
% \problem{}
|
||||
% Show that if $G$ has four elements, $(G, \ast)$ is abelian.
|
||||
|
||||
\problem{}
|
||||
Let $(G, \ast)$ be a group with finitely many elements, and let $a \in G$. \par
|
||||
|
Reference in New Issue
Block a user