Lambda edits
This commit is contained in:
@ -49,13 +49,9 @@ How about $(8~NOT~F)$?
|
||||
\pagebreak
|
||||
|
||||
\problem{}
|
||||
This handout may remind you of Professor Oleg's handout on Peano's axioms. Good. \par
|
||||
Recall the tools we used to build the natural numbers: \par
|
||||
We had a zero element and a \say{successor} operation so that $1 \coloneqq S(0)$, $2 \coloneqq S(1)$, and so on.
|
||||
|
||||
\vspace{1ex}
|
||||
|
||||
Create a successor operation for the Church numerals. \par
|
||||
Peano's axioms state that we only need a zero element and a \say{successor} operation to
|
||||
build the natural numbers. We've already defined zero.
|
||||
Now, create a successor operation so that $1 \coloneqq S(0)$, $2 \coloneqq S(1)$, and so on. \par
|
||||
\hint{A good signature for this function is $\lm nfa$, or more clearly $\lm n.\lm fa$. Do you see why?}
|
||||
|
||||
\begin{solution}
|
||||
@ -175,36 +171,5 @@ $D(1) = 0$, $D(2) = 1$, etc. $D(0)$ should be zero. \par
|
||||
$D = \lm n . \Bigl[(~n~H~\langle 0, 0 \rangle~)~T\Bigr]$
|
||||
\end{solution}
|
||||
|
||||
\begin{solution}
|
||||
Here's a different solution. \par
|
||||
Can you figure out how it works?
|
||||
|
||||
\vspace{1ex}
|
||||
|
||||
$
|
||||
D_0 =
|
||||
\lm p . \Bigl[p~T\Bigr]
|
||||
\Bigl\langle
|
||||
F ~,~ p~F
|
||||
\Bigr\rangle
|
||||
\Bigl\langle
|
||||
F
|
||||
~,~
|
||||
\bigl\langle
|
||||
p~F~T ~,~ ( (p~F~T)~(P~F~F) )
|
||||
\bigr\rangle
|
||||
\Bigr\rangle
|
||||
$
|
||||
|
||||
\vspace{1ex}
|
||||
|
||||
$
|
||||
D = \lm nfa .
|
||||
\Bigl(
|
||||
n D_0 \Bigl\langle T, \langle f, a \rangle \Bigr\rangle
|
||||
\Bigr)~F~F
|
||||
$
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
Reference in New Issue
Block a user