Edits
This commit is contained in:
@ -15,17 +15,22 @@ $$
|
||||
for integer coefficients $a_i$.
|
||||
|
||||
\problem{}
|
||||
Which of the following generate $\mathbb{Z}^3$?
|
||||
Which of the following generate $\mathbb{Z}^2$?
|
||||
\begin{itemize}
|
||||
\item $\{ (1,2), (2,1) \}$
|
||||
\item $\{ (1,0), (0,2) \}$
|
||||
\item $\{ (1,1), (1,0), (0,1) \}$
|
||||
\end{itemize}
|
||||
|
||||
\begin{solution}
|
||||
Only the last.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Find a set of vectors that generates $\mathbb{Z}^2$.
|
||||
Find a set of vectors that generates $\mathbb{Z}^2$. \\
|
||||
$\{ (0, 1), (1, 0) \} doesn't count.$
|
||||
|
||||
\vfill
|
||||
|
||||
@ -40,8 +45,6 @@ Find a set of vectors that generates $\mathbb{Z}^n$.
|
||||
\definition{}
|
||||
A \textit{fundamental region} of a lattice is the parallelepiped spanned by a generating set. The exact shape of this region depends on the generating set we use.
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Draw two fundamental regions of $\mathbb{Z}^2$ using two different generating sets. Verify that their volumes are the same.
|
||||
|
||||
|
Reference in New Issue
Block a user