Minor edits
This commit is contained in:
@ -1,5 +1,5 @@
|
||||
\definition{}
|
||||
The \textit{integer lattice} $\mathbb{Z}^n \subset \mathbb{R}^n$ is the set of points with integer coordinates. We call each point in the lattice a \textit{lattice point}.
|
||||
The \textit{integer lattice} $\mathbb{Z}^n \subset \mathbb{R}^n$ is the set of points with integer coordinates.
|
||||
|
||||
\problem{}
|
||||
Draw $\mathbb{Z}^2$.
|
||||
@ -8,11 +8,12 @@ Draw $\mathbb{Z}^2$.
|
||||
|
||||
|
||||
\definition{}
|
||||
We say a set of vectors $\{v_1, v_2, ..., v_n\}$ \textit{generates} $\mathbb{Z}^n$ if every lattice point can be written uniquely as
|
||||
We say a set of vectors $\{v_1, v_2, ..., v_k\}$ \textit{generates} $\mathbb{Z}^n$ if every lattice point can be written uniquely as
|
||||
$$
|
||||
a_1v_1 + a_2v_2 + ... + a_nv_n
|
||||
a_1v_1 + a_2v_2 + ... + a_kv_k
|
||||
$$
|
||||
for integer coefficients $a_i$.
|
||||
for integer coefficients $a_i$. \par
|
||||
It is fairly easy to show that $k$ must be at least $n$.
|
||||
|
||||
\problem{}
|
||||
Which of the following generate $\mathbb{Z}^2$?
|
||||
@ -29,8 +30,8 @@ Which of the following generate $\mathbb{Z}^2$?
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Find a set of vectors that generates $\mathbb{Z}^2$. \\
|
||||
$\{ (0, 1), (1, 0) \} doesn't count.$
|
||||
Find a set of two vectors that generates $\mathbb{Z}^2$. \\
|
||||
Don't say $\{ (0, 1), (1, 0) \}$, that's too easy.
|
||||
|
||||
\vfill
|
||||
|
||||
|
Reference in New Issue
Block a user