Minor edits
This commit is contained in:
		@ -1,5 +1,5 @@
 | 
			
		||||
\definition{}
 | 
			
		||||
The \textit{integer lattice} $\mathbb{Z}^n \subset \mathbb{R}^n$ is the set of points with integer coordinates. We call each point in the lattice a \textit{lattice point}.
 | 
			
		||||
The \textit{integer lattice} $\mathbb{Z}^n \subset \mathbb{R}^n$ is the set of points with integer coordinates.
 | 
			
		||||
 | 
			
		||||
\problem{}
 | 
			
		||||
Draw $\mathbb{Z}^2$.
 | 
			
		||||
@ -8,11 +8,12 @@ Draw $\mathbb{Z}^2$.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\definition{}
 | 
			
		||||
We say a set of vectors $\{v_1, v_2, ..., v_n\}$ \textit{generates} $\mathbb{Z}^n$ if every lattice point can be written uniquely as
 | 
			
		||||
We say a set of vectors $\{v_1, v_2, ..., v_k\}$ \textit{generates} $\mathbb{Z}^n$ if every lattice point can be written uniquely as
 | 
			
		||||
$$
 | 
			
		||||
	a_1v_1 + a_2v_2 + ... + a_nv_n
 | 
			
		||||
	a_1v_1 + a_2v_2 + ... + a_kv_k
 | 
			
		||||
$$
 | 
			
		||||
for integer coefficients $a_i$.
 | 
			
		||||
for integer coefficients $a_i$. \par
 | 
			
		||||
It is fairly easy to show that $k$ must be at least $n$.
 | 
			
		||||
 | 
			
		||||
\problem{}
 | 
			
		||||
Which of the following generate $\mathbb{Z}^2$?
 | 
			
		||||
@ -29,8 +30,8 @@ Which of the following generate $\mathbb{Z}^2$?
 | 
			
		||||
\vfill
 | 
			
		||||
 | 
			
		||||
\problem{}
 | 
			
		||||
Find a set of vectors that generates $\mathbb{Z}^2$. \\
 | 
			
		||||
$\{ (0, 1), (1, 0) \} doesn't count.$
 | 
			
		||||
Find a set of two vectors that generates $\mathbb{Z}^2$. \\
 | 
			
		||||
Don't say $\{ (0, 1), (1, 0) \}$, that's too easy.
 | 
			
		||||
 | 
			
		||||
\vfill
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
		Reference in New Issue
	
	Block a user