Fixed errors
This commit is contained in:
@ -5,26 +5,25 @@ An ISBN\footnote{International Standard Book Number} is a unique numeric book id
|
||||
\vspace{3mm}
|
||||
|
||||
Say we have a sequence of nine digits, forming a partial ISBN-10: $n_1 n_2 ... n_9$. \par
|
||||
The final digit, $n_{10}$, is calculated as follows:
|
||||
The final digit, $n_{10}$, is chosen from $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ so that:
|
||||
|
||||
$$
|
||||
\Biggr( \sum_{i = 1}^{9} (11 - i) \times n_i \Biggl) \text{ mod } 11
|
||||
\sum_{i = 1}^{10} (11 - i)n_i
|
||||
$$
|
||||
|
||||
If $n_{10}$ is equal to 10, it is written as \texttt{X}.
|
||||
|
||||
|
||||
\problem{}
|
||||
Which of the following could be valid ISBNs?
|
||||
Only one of the following ISBNs is valid. Which one is it?
|
||||
|
||||
\begin{itemize}
|
||||
\item \texttt{0-134-54896-2}
|
||||
\item \texttt{0-895-77258-2}
|
||||
\item \texttt{0-316-00395-6}
|
||||
\end{itemize}
|
||||
|
||||
\begin{solution}
|
||||
Only the first has an inconsistent check digit.
|
||||
The first has an inconsistent check digit.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
@ -66,31 +65,6 @@ This is called a \textit{transposition error}.
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
Show that the following sum is divisible by 11 iff $n_1n_2...n_{10}$ is a valid ISBN-10.
|
||||
$$
|
||||
\sum_{i = 1}^{10} (11 - i)n_i
|
||||
$$
|
||||
|
||||
\begin{solution}
|
||||
Proof that valid $\implies$ divisible, working in mod 11:
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
$10n_1 + 9n_2 + ... + 2n_9 + n_{10} \equiv$ \par
|
||||
$(-n_1) + (-2n_2) + ... + (-9n_9) + n_{10} =$ \par
|
||||
$-n_{10} + n_{10} \equiv 0$
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
Having done this, the rest is easy. Work in reverse, or note that each step above is an iff.
|
||||
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\problem{}
|
||||
|
Reference in New Issue
Block a user