Fixed errors
This commit is contained in:
		| @ -5,26 +5,25 @@ An ISBN\footnote{International Standard Book Number} is a unique numeric book id | ||||
| \vspace{3mm} | ||||
|  | ||||
| Say we have a sequence of nine digits, forming a partial ISBN-10: $n_1 n_2 ... n_9$. \par | ||||
| The final digit, $n_{10}$, is calculated as follows: | ||||
| The final digit, $n_{10}$, is chosen from $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ so that: | ||||
|  | ||||
| $$ | ||||
| 	\Biggr( \sum_{i = 1}^{9} (11 - i) \times n_i \Biggl) \text{ mod } 11 | ||||
| 	\sum_{i = 1}^{10} (11 - i)n_i | ||||
| $$ | ||||
|  | ||||
| If $n_{10}$ is equal to 10, it is written as \texttt{X}. | ||||
|  | ||||
|  | ||||
| \problem{} | ||||
| Which of the following could be valid ISBNs? | ||||
| Only one of the following ISBNs is valid. Which one is it? | ||||
|  | ||||
| \begin{itemize} | ||||
| 	\item \texttt{0-134-54896-2} | ||||
| 	\item \texttt{0-895-77258-2} | ||||
| 	\item \texttt{0-316-00395-6} | ||||
| \end{itemize} | ||||
|  | ||||
| \begin{solution} | ||||
| 	Only the first has an inconsistent check digit. | ||||
| 	The first has an inconsistent check digit. | ||||
| \end{solution} | ||||
|  | ||||
| \vfill | ||||
| @ -66,31 +65,6 @@ This is called a \textit{transposition error}. | ||||
| \end{solution} | ||||
|  | ||||
| \vfill | ||||
|  | ||||
|  | ||||
|  | ||||
| \problem{} | ||||
| Show that the following sum is divisible by 11 iff $n_1n_2...n_{10}$ is a valid ISBN-10. | ||||
| $$ | ||||
| 	\sum_{i = 1}^{10} (11 - i)n_i | ||||
| $$ | ||||
|  | ||||
| \begin{solution} | ||||
| 	Proof that valid $\implies$ divisible, working in mod 11: | ||||
|  | ||||
| 	\vspace{2mm} | ||||
|  | ||||
| 	$10n_1 + 9n_2 + ... + 2n_9 + n_{10} \equiv$ \par | ||||
| 	$(-n_1) + (-2n_2) + ... + (-9n_9) + n_{10} =$ \par | ||||
| 	$-n_{10} + n_{10} \equiv 0$ | ||||
|  | ||||
| 	\vspace{2mm} | ||||
|  | ||||
| 	Having done this, the rest is easy. Work in reverse, or note that each step above is an iff. | ||||
|  | ||||
| \end{solution} | ||||
|  | ||||
| \vfill | ||||
| \pagebreak | ||||
|  | ||||
| \problem{} | ||||
|  | ||||
		Reference in New Issue
	
	Block a user