Merge branch 'master' of ssh://git.betalupi.com:33/Mark/ormc-handouts
This commit is contained in:
commit
a1df6a6327
@ -58,6 +58,48 @@
|
||||
|
||||
\vspace{4mm}
|
||||
|
||||
\makeatletter
|
||||
\if@solutions
|
||||
\begin{instructornote}
|
||||
\textbf{Context \& Computability:} (or, why do we need lambda calculus?)\par
|
||||
\note{From Peter Selinger's \textit{Lecture Notes on Lambda Calculus}}
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
In the 1930s, several people were interested in the question: what does it mean for
|
||||
a function $f : \mathbb{N} \mapsto \mathbb{N}$ to be computable? An informal definition of computability
|
||||
is that there should be a pencil-and-paper method allowing a trained person to
|
||||
calculate $f(n)$, for any given $n$. The concept of a pencil-and-paper method is not
|
||||
so easy to formalize. Three different researchers attempted to do so, resulting in
|
||||
the following definitions of computability:
|
||||
|
||||
\begin{itemize}
|
||||
\item Turing defined an idealized computer we now call a Turing machine, and
|
||||
postulated that a function is \say{computable} if and only
|
||||
if it can be computed by such a machine.
|
||||
|
||||
\item G\"odel defined the class of general recursive functions as the smallest set of
|
||||
functions containing all the constant functions, the successor function, and
|
||||
closed under certain operations (such as compositions and recursion). He
|
||||
postulated that a function is \say{computable} if and only
|
||||
if it is general recursive.
|
||||
|
||||
\item Church defined an idealized programming language called the lambda calculus,
|
||||
and postulated that a function is \say{computable} if and only if it can be written as a lambda term.
|
||||
\end{itemize}
|
||||
|
||||
It was proved by Church, Kleene, Rosser, and Turing that all three computational
|
||||
models were equivalent to each other --- each model defines the same class
|
||||
of computable functions. Whether or not they are equivalent to the \say{intuitive}
|
||||
notion of computability is a question that cannot be answered, because there is no
|
||||
formal definition of \say{intuitive computability.} The assertion that they are in fact
|
||||
equivalent to intuitive computility is known as the Church-Turing thesis.
|
||||
\end{instructornote}
|
||||
\vfill
|
||||
\pagebreak
|
||||
\fi
|
||||
\makeatother
|
||||
|
||||
\input{parts/00 intro}
|
||||
\input{parts/01 combinators}
|
||||
\input{parts/02 boolean}
|
||||
|
@ -178,7 +178,6 @@ Reduce the following expressions. \par
|
||||
\textbf{Solution for $(I~I)$:}\par
|
||||
Recall that $I = \lm x.x$. First, we rewrite the left $I$ to get $(\lm x . x )~I$. \par
|
||||
Applying this function by replacing $x$ with $I$, we get $I$:
|
||||
|
||||
$$
|
||||
I ~ I =
|
||||
(\lm x . \tzm{b}x )~\tzm{a}I =
|
||||
@ -193,11 +192,7 @@ Reduce the following expressions. \par
|
||||
\draw[->,gray,shorten >=5pt,shorten <=3pt]
|
||||
(a.center) to (b.east);
|
||||
\end{tikzpicture}
|
||||
$$
|
||||
\vspace{0.5mm}
|
||||
|
||||
So, $I~I$ reduces to itself. This makes sense, since the identity
|
||||
function doesn't change its input!
|
||||
$$\null
|
||||
\end{examplesolution}
|
||||
|
||||
|
||||
@ -214,11 +209,20 @@ Rewrite the following expressions with as few parentheses as possible, without c
|
||||
Remember that lambda calculus is left-associative.
|
||||
\vspace{2mm}
|
||||
\begin{itemize}[itemsep=2mm]
|
||||
\item $(\lm x. (\lm y. \lm (z. ((xz)(yz)))))$
|
||||
\item $(\lm x. (\lm y. \lm z. ((xz)(yz))))$
|
||||
\item $((ab)(cd))((ef)(gh))$
|
||||
\item $(\lm x. ((\lm y.(yx))(\lm v.v)z)u) (\lm w.w)$
|
||||
\end{itemize}
|
||||
|
||||
\begin{solution}
|
||||
$(\lm x. ((\lm y.(yx))(\lm v.v)z)u) (\lm w.w) \implies (\lm x. (\lm y.yx) (\lm v.v)~z~u) \lm w.w$
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
It's important that a function's output (everything after the dot) will continue until we hit a close-paren.
|
||||
This is why we need the parentheses in the above example.
|
||||
\end{solution}
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
@ -317,17 +321,19 @@ We've already seen this on the previous page: $K$ takes an input $x$ and uses it
|
||||
You can think of $K$ as a \say{factory} that constructs functions using the input we provide.
|
||||
|
||||
\problem{}<firstcardinal>
|
||||
Let $C = \lm f. \Bigl[\lm g. \Bigl( \lm x. [~ g(f(x)) ~] \Bigr)\Bigr]$. For now, we'll call it the \say{composer.}
|
||||
\vspace{1mm} % Slight gap for big paren
|
||||
Let $C = \lm f. \Bigl[\lm g. \Bigl( \lm x. [~ f(g(x)) ~] \Bigr)\Bigr]$. For now, we'll call it the \say{composer.} \par
|
||||
\note[Note]{We could also call $C$ the \say{right-associator.} Why?}
|
||||
|
||||
\vspace{1mm}
|
||||
\vspace{3mm}
|
||||
|
||||
Note that $C$ has three \say{layers} of curry: it makes a function ($\lm g$) that makes another function ($\lm x$). \par
|
||||
$C$ has three \say{layers} of curry: it makes a function ($\lm g$) that makes another function ($\lm x$). \par
|
||||
If we look closely, we'll find that $C$ pretends to take three arguments.
|
||||
|
||||
\vspace{1mm}
|
||||
|
||||
What does $C$ do? Evaluate $(C~a~b~x)$ for arbitary expressions $a, b,$ and $x$. \par
|
||||
\hint{Place parentheses first. Remember, function application is left-associative.}
|
||||
\hint{Evaluate $(C~a)$ first. Remember, function application is left-associative.}
|
||||
|
||||
\vfill
|
||||
|
||||
|
90
Advanced/Options in Finance/main.tex
Executable file
90
Advanced/Options in Finance/main.tex
Executable file
@ -0,0 +1,90 @@
|
||||
% use [nosolutions] flag to hide solutions.
|
||||
% use [solutions] flag to show solutions.
|
||||
\documentclass[
|
||||
solutions
|
||||
]{../../resources/ormc_handout}
|
||||
\usepackage{../../resources/macros}
|
||||
|
||||
\usepackage{mdframed}
|
||||
\usepackage{pgf}
|
||||
|
||||
% Ruble symbol with tweaks
|
||||
\DeclareRobustCommand*{\Rub}{%
|
||||
\begingroup
|
||||
\dimendef\H=0 %
|
||||
\settoheight\H{P}%
|
||||
\begin{pgfpicture}%
|
||||
\pgfsetlinewidth{.1\H}%
|
||||
\pgfsetrectcap
|
||||
\pgfsetmiterjoin
|
||||
\pgfmoveto{\pgfpoint{0pt}{0.07\H}}% Move to bottom of main line
|
||||
\pgflineto{\pgfpoint{0pt}{.90\H}}% P main line
|
||||
\pgflineto{\pgfpoint{.3\H}{.90\H}}% P top line
|
||||
\pgfpatharc{90}{-90}{.21\H}% P circle
|
||||
\pgflineto{\pgfpoint{-.08\H}{.48\H}}% P bottom line
|
||||
\pgfmoveto{\pgfpoint{-.08\H}{.31\H}}% Bonus line move
|
||||
\pgflineto{\pgfpoint{.34\H}{.31\H}}% Bonus line draw
|
||||
\pgfusepath{stroke}%
|
||||
\pgfmoveto{\pgfpoint{-.23\H}{0pt}}% Before space
|
||||
\pgfmoveto{\pgfpoint{0.55\H}{0pt}}% After space
|
||||
\end{pgfpicture}%
|
||||
\endgroup
|
||||
}
|
||||
|
||||
% Ruble symbol, per official Kremlin specification
|
||||
%
|
||||
%\DeclareRobustCommand*{\Rub}{%
|
||||
% \begingroup
|
||||
% \dimendef\H=0 %
|
||||
% \settoheight\H{P}%
|
||||
% \begin{pgfpicture}%
|
||||
% \pgfsetlinewidth{.1\H}%
|
||||
% \pgfsetrectcap
|
||||
% \pgfsetmiterjoin
|
||||
% \pgfmoveto{\pgfpoint{0pt}{0.05\H}}%
|
||||
% \pgflineto{\pgfpoint{0pt}{.95\H}}%
|
||||
% \pgflineto{\pgfpoint{.35\H}{.95\H}}%
|
||||
% \pgfpatharc{90}{-90}{.225\H}%
|
||||
% \pgflineto{\pgfpoint{-.05\H}{.5\H}}%
|
||||
% \pgfmoveto{\pgfpoint{-.05\H}{.34\H}}%
|
||||
% \pgflineto{\pgfpoint{.38\H}{.34\H}}%
|
||||
% \pgfusepath{stroke}%
|
||||
% \pgfmoveto{\pgfpoint{-.175\H}{0pt}}%
|
||||
% \pgfmoveto{\pgfpoint{.7\H}{0pt}}%
|
||||
% \end{pgfpicture}%
|
||||
% \endgroup
|
||||
%}
|
||||
|
||||
\newmdenv[
|
||||
topline=false,
|
||||
bottomline=false,
|
||||
rightline=true,
|
||||
leftline=true,
|
||||
linewidth=0.3mm,
|
||||
frametitle={Contract:},
|
||||
frametitlefont={\textsc},
|
||||
%
|
||||
skipabove=1mm,
|
||||
skipbelow=1mm,
|
||||
%
|
||||
innerleftmargin=2mm,
|
||||
innerrightmargin=4mm,
|
||||
leftmargin=2mm,
|
||||
rightmargin=2mm,
|
||||
]{contract}
|
||||
|
||||
\uptitlel{Advanced 2}
|
||||
\uptitler{Fall 2023}
|
||||
\title{Options in Finance}
|
||||
\subtitle{
|
||||
Prepared by \githref{Mark} on \today{}
|
||||
}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\maketitle
|
||||
|
||||
\input{parts/0 intro}
|
||||
\input{parts/1 call}
|
||||
|
||||
\end{document}
|
5
Advanced/Options in Finance/parts/0 intro.tex
Normal file
5
Advanced/Options in Finance/parts/0 intro.tex
Normal file
@ -0,0 +1,5 @@
|
||||
\section{Introduction}
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
116
Advanced/Options in Finance/parts/1 call.tex
Normal file
116
Advanced/Options in Finance/parts/1 call.tex
Normal file
@ -0,0 +1,116 @@
|
||||
\section{Call Options}
|
||||
|
||||
\definition{}
|
||||
A \textit{call option} is an agreement between a buyer (B) and a seller (S): \par
|
||||
|
||||
\begin{contract}[frametitle={Contract: Call Option}]
|
||||
B pays S a premium $p$. \par
|
||||
In return, S agrees to sell B a certain commodity $\mathbb{X}$ for a fixed price $k$ at a future time $t$.
|
||||
\end{contract}
|
||||
|
||||
|
||||
|
||||
|
||||
\problem{}<firstcall>
|
||||
B has ten call options for $\mathbb{X}$ at $23\Rub$. The current price of $\mathbb{X}$ is $20\Rub$. \par
|
||||
How much profit can B make if these contracts expire when $\mathbb{X}$ is $30\Rub$? \par
|
||||
\hint{When the contract expires, B can buy 10 shares of $\mathbb{X}$ at the price the contract set.}
|
||||
|
||||
\begin{solution}
|
||||
B has the right to buy 10 shares of $\mathbb{X}$ at $23\Rub$. \par
|
||||
If B immediately sells them, his profit is $-230 + 300 = 70\Rub$
|
||||
\end{solution}
|
||||
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
If B paid $10\Rub$ for the call options in \ref{firstcall}, how much money did he really make?
|
||||
|
||||
\begin{solution}
|
||||
$-10 + (-230 + 300) = 60\Rub$
|
||||
\end{solution}
|
||||
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
Now, suppose that B bought and sold $\mathbb{X}$ directly instead of using a call option. \par
|
||||
How much profit would B have made?
|
||||
|
||||
\begin{solution}
|
||||
Buy for $200\Rub$, sell for $300\Rub$.\par
|
||||
$-200 + 300 = 100\Rub$
|
||||
\end{solution}
|
||||
|
||||
|
||||
|
||||
\vfill
|
||||
|
||||
Given the results of the previous problems, why would anybody buy a call option?
|
||||
\pagebreak
|
||||
|
||||
|
||||
\problem{}
|
||||
Suppose $\mathbb{X}$ is worth $x_0$ right now. \par
|
||||
Call options to buy $\mathbb{X}$ at $k$ are sold for $p$.
|
||||
|
||||
\begin{itemize}
|
||||
\item What is the set of B's possible profit if..
|
||||
\begin{itemize}
|
||||
\item B buys a call option?
|
||||
\item B buys $\mathbb{X}$ directly?
|
||||
\end{itemize}
|
||||
\hint{That is, what amounts of money can he make (or lose)?}
|
||||
|
||||
\item Are call options priced above or below the price of their stock? Why?
|
||||
\item Why would anybody buy a call option?
|
||||
|
||||
\end{itemize}
|
||||
|
||||
|
||||
\begin{solution}
|
||||
\textbf{Call Option:} $[p, \infty)$ \par
|
||||
If the price of $\mathbb{X}$ rises, there is no limit to how much money B can make. \par
|
||||
If the price falls, $B$ can choose to let his contract expire, losing only $p$.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
\textbf{Direct:} $[x_0, \infty)$\par
|
||||
If the price of $\mathbb{X}$ rises, there is again no limit to how much money B can make. \par
|
||||
If the price falls, $B$ will lose everything he paid for his shares of $\mathbb{X}$.
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
Of course, call options are priced below their stock. There wouldn't be a reason to buy then
|
||||
if they were priced above!
|
||||
\end{solution}
|
||||
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Suppose $\mathbb{X}$ is worth $x_0$ right now. \par
|
||||
Call options to buy $\mathbb{X}$ at $k$ are sold for $p$. \par
|
||||
|
||||
\vspace{2mm}
|
||||
Assume that S owns no stock---if B executes his contracts, she will buy stock and re-sell it to him. \par
|
||||
What are S's possible profits if she sells B a call option?
|
||||
|
||||
\begin{solution}
|
||||
$(-\infty, ~p]$
|
||||
|
||||
If the price of $\mathbb{X}$ rises, S will have to re-sell shares to B at a loss. \par
|
||||
If the price falls, B could choose to buy shares from S at a loss, but he won't. \par
|
||||
In this case, S only keeps the premium B paid for the contract.
|
||||
\end{solution}
|
||||
|
||||
|
||||
\vfill
|
||||
|
||||
\pagebreak
|
@ -370,7 +370,7 @@
|
||||
\note{Proposed by Sunny}
|
||||
Using a compass and ruler, find two circles tangent to a point D and lines AB and AC. (Problem of Appolonius, PLL case) \par
|
||||
\hint{
|
||||
All circles tangent to $AB$ and $AC$ are homothetic with centre at $A$. What does this mean? \par
|
||||
All circles tangent to $AB$ and $AC$ are homothetic with centre at $A$. What does this mean? \\
|
||||
Also, the angle bisector may help.
|
||||
}
|
||||
|
||||
|
9
build.sh
9
build.sh
@ -36,12 +36,17 @@ function build() {
|
||||
echo "|> Building ${job_name}..."
|
||||
cd "${doc_dir}"
|
||||
|
||||
tectonic_args=(
|
||||
--chatter minimal
|
||||
--web-bundle "https://static.betalupi.com/tectonic/texlive2023-nopatch.tar"
|
||||
)
|
||||
|
||||
|
||||
# Build handout
|
||||
echo "\\def\\argNoSolutions{1}\\input{${main_file}}" | \
|
||||
tectonic \
|
||||
"${tectonic_args[@]}" \
|
||||
--outfmt pdf \
|
||||
--chatter minimal \
|
||||
-
|
||||
|
||||
stat=$?
|
||||
@ -60,8 +65,8 @@ function build() {
|
||||
# Build solutions
|
||||
echo "\\def\\argYesSolutions{1}\\input{${main_file}}" | \
|
||||
tectonic \
|
||||
"${tectonic_args[@]}" \
|
||||
--outfmt pdf \
|
||||
--chatter minimal \
|
||||
-
|
||||
|
||||
stat=$?
|
||||
|
@ -427,19 +427,15 @@
|
||||
\centering
|
||||
|
||||
% Left and right headers (uptitle)
|
||||
\def\uptitle{%
|
||||
\if\@uptitlel\relax\else\textsc{\@uptitlel}\fi \hfill~%
|
||||
\if\@uptitlel\relax\else\textsc{\@uptitlel}\fi \hfill\null%
|
||||
\if\@uptitler\relax\else\textsc{\@uptitler}\fi \par
|
||||
}
|
||||
\if\@uptitlel\relax % If neither header is defined,
|
||||
\if\@uptitlel\relax % don't insert an upper title.
|
||||
\def\@uptitle{\relax}
|
||||
\fi\fi\uptitle{}
|
||||
|
||||
% Main title
|
||||
\rule{\linewidth}{0.2mm} \par
|
||||
\huge \@title \par \normalsize
|
||||
\vspace{1ex} \@subtitle \par
|
||||
\vspace{4mm}
|
||||
{\huge \@title} \par
|
||||
\vspace{2mm} \@subtitle \par
|
||||
\vspace{1mm}
|
||||
\rule{\linewidth}{0.2mm} \par
|
||||
|
||||
% Solution warning
|
||||
|
Loading…
x
Reference in New Issue
Block a user