Added proof problems

This commit is contained in:
mark 2023-10-06 08:40:37 -07:00
parent dfadd23e63
commit a073931145

View File

@ -101,4 +101,118 @@
\end{itemize} \end{itemize}
\vfill
\pagebreak
\problem{}
Let $X = \{1, 2, ..., n\}$ for some $n \geq 2$. Let $k \in \mathbb{Z}$ so that $1 \leq k \leq n - 1$. \par
Let $E = \{Y \subset X ~\bigl|~ |Y| = k\}$, $E_1 = \{Y \in E ~\bigl|~ 1 \in Y\}$, and $E_2 = \{Y \in E ~\bigl|~ 1 \notin Y\}$
\vspace{2mm}
\begin{itemize}[itemsep=4mm]
\item Show that $\{E_1, E_2\}$ is a partition of $E$. \par
In other words, show that $\varnothing \neq E_1$, $\varnothing \neq E_2$, $E_1 \cup E_2 = E$, and $E_1 \cap E_2 = \varnothing$. \par
\hint{What does this mean in English?}
\item Compute $|E_1|$, $|E_2|$, and $|E|$. \par
Recall that a set of size $n$ has $\binom{n}{k}$ subsets of size $k$.
\item Conclude that for any $n$ and $k$ satisfying the conditions above,
$$
\binom{n-1}{k} + \binom{n-1}{k-1} = \binom{n}{k}
$$
\item For $t \in \mathbb{N}$, show that $\binom{2t}{t}$ is even.
\end{itemize}
\vfill
\pagebreak
\problem{}
Let $x, y \in \mathbb{N}$ be natural numbers.
Consider the set $S = \{ax + by ~\bigl|~ a, b \in \mathbb{Z}, ax + by = 0\}$. \par
The well-ordering principle states that every nonempty subset of the natural numbers has a least element.
You many also need the division algorithm.
\vspace{4mm}
\begin{itemize}[itemsep=4mm]
\item Show that $S$ has a least element. Call it $d$.
\item Let $z = \text{gcd}(x, y)$. Show that $z$ divides $d$.
\item Show that $d$ divides $x$ and $d$ divides $y$.
\item Prove or disprove $\text{gcd}(x, y) \in S$.
\end{itemize}
\vfill
\pagebreak
\problem{}
\begin{itemize}[itemsep=4mm]
\item Let $f: X \to Y$ be an injective function. Show that for any two functions $g: Z \to X$ and $h: Z \to X$,
if $f \circ g = f \circ h$ from $Z$ to $Y$ then $g = h$ from $Z$ to $X$. \par
By definition, functions are equal if they agree on every input in their domain. \par
\hint{This is a one-line proof.}
\item Let $f: X \to Y$ be a surjective function.
Show that for any two functions $g: Y \to W$ and $h: Y \to W$, if
$g \circ f = h \circ f \implies g = h$.
\item[\star] Let $f: X \to Y$ be a function where for any set $Z$ and functions $g: Z \to X$ and $h: Z \to X$,
$f \circ g = f \circ h \implies g = h$. Show that $f$ is injective.
\item[\star] Let $f: X \to Y$ be a function where for any set $W$ and functions $g: Y \to W$ and $h: Y \to W$,
$g \circ f = h \circ f \implies g = h$. Show f is surjective.
\end{itemize}
\vfill
\pagebreak
\problem{}
In this problem we prove the binomial theorem:
for $a, b \in \mathbb{R}$ and $n \in \mathbb{Z}^+$\hspace{-0.5ex}, we have
$$
(a + b)^n = \sum_{k=0}^n \binom{n}{k}a^kb^{N-k}
$$
In the proof below, we let $a$ and $b$ be arbitrary numbers.
\vspace{4mm}
\begin{itemize}
\item Check that this formula works for $n = 0$. Also, check a few small $n$
to get a sense of what's going on.
\item Let $N \in \mathbb{N}$. Suppose we know that for a specific value of $N$,
$$
(a + b)^N = \sum_{k=0}^N \binom{N}{k}a^kb^{N-k}
$$
Now, show that this formula also works for $N = N + 1$.
\item Conclude that this formula works for all $a, b \in \mathbb{R}$ and $n \in \mathbb{Z}^+$\hspace{-0.5ex}.
\end{itemize}
\vfill
\pagebreak
\problem{}
A \textit{relation} on a set $X$ is an $R \subset X \times X$. \par
\begin{itemize}
\item We say $R$ is \textit{reflexive} if $(x,x) \in R$ for all $x \in X$.
\item We say $R$ is \textit{symmetric} if $(x, y) \in R \implies (y, x) \in R$.
\item We say $R$ is \textit{transitive} if $(x, y) \in R$ and $(y, z) \in R$ imply $(x, z) \in R$.
\item We say $R$ is an \textit{equivalence relation} if it is reflexive, symmetric, and transitive.
\end{itemize}
Say we have a set $X$ and an equivalence relation $R$. \par
The \textit{equivalence class} of an element $x \in X$ is the set $\{y \in X ~\bigl|~ (x, y) \in R\}$.
\vspace{4mm}
Let $R$ be an equivalence relation on a set $X$. \par
Show that the set of equivalence classes is a partition of $X$.
\end{document} \end{document}