Crypto edits
This commit is contained in:
parent
386b83c83f
commit
8b10780fbe
@ -8,6 +8,7 @@
|
||||
\usepackage{../../resources/macros}
|
||||
|
||||
\usepackage{multicol}
|
||||
\usepackage{mathtools}
|
||||
|
||||
\uptitlel{Advanced 2}
|
||||
\uptitler{\smallurl{}}
|
||||
|
@ -17,20 +17,19 @@ Find $\gcd(20, 14)$ by hand.
|
||||
Given two integers $a, b$, we can find two integers $q, r$, where $0 \leq r < b$ and $a = qb + r$. \par
|
||||
In other words, we can divide $a$ by $b$ to get $q$ remainder $r$.
|
||||
|
||||
\begin{instructornote}
|
||||
\ref{divalgo} looks scary on paper, but it's quite simple. \par
|
||||
Doing a small example on the board (like $14 \div 3$) may be a good idea. \par
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
For those that are new to modular arithmetic, you may want to explain how remainders,
|
||||
clock-face counting, division algorithm, and modular arithmetic are all the same.
|
||||
\end{instructornote}
|
||||
|
||||
\theorem{}<gcd_abc>
|
||||
For any integers $a, b, c$, \par
|
||||
$\gcd(ac + b, a) = \gcd(a, b)$
|
||||
|
||||
\problem{}
|
||||
Compute the gcd of 12 and 976.
|
||||
\begin{solution}
|
||||
$976 = 3 \times 324 + 4 = 3 \times 4 \times 81 + 4$
|
||||
So, $\gcd(a, b) = 4$
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{The Euclidean Algorithm}<euclid>
|
||||
Using the two theorems above, detail an algorithm for finding $\gcd(a, b)$. \par
|
||||
Then, compute $\gcd(1610, 207)$ by hand. \par
|
||||
|
@ -3,6 +3,12 @@
|
||||
\definition{}
|
||||
$\mathbb{Z}_n$ is the set of integers mod $n$. For example, $\mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$. \par
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
Multiplication in $\mathbb{Z}_n$ works much like multiplication in $\mathbb{Z}$: \par
|
||||
If $a, b$ are elements of $\mathbb{Z}_n$, $a \times b$ is the remainder of $a \times b$ when divided by $n$. \par
|
||||
\note{For example, $2 \times 2 = 4$ and $3 \times 4 = 12 = 2$ in $\mathbb{Z}_5$}
|
||||
|
||||
\problem{}
|
||||
Create a multiplication table for $\mathbb{Z}_4$:
|
||||
|
||||
@ -37,12 +43,25 @@ $a$ has an inverse in $\mathbb{Z}_n$ iff $\gcd(a, n) = 1$ \par
|
||||
Find the inverse of $3$ in $\mathbb{Z}_4$, if one exists. \par
|
||||
Find the inverse of $20$ in $\mathbb{Z}_{14}$, if one exists. \par
|
||||
Find the inverse of $4$ in $\mathbb{Z}_7$, if one exists.
|
||||
|
||||
\begin{solution}
|
||||
\begin{itemize}
|
||||
\item $3^{-1}$ in $\mathbb{Z}_{4}$ is $3$
|
||||
\item $20^{-1}$ in $\mathbb{Z}_{14}$ doesn't exist.
|
||||
\item $4^{-1}$ in $\mathbb{Z}_{7}$ is $2$
|
||||
\end{itemize}
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
\problem{}
|
||||
Today, we will often assume that $n$ is prime. \par
|
||||
Why? What is special about $\mathbb{Z}_n$ with a prime $n$?
|
||||
Show that if $n$ is not prime, $\mathbb{Z}_n$ has at least one element with no inverse.
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Is this true if $n$ is prime?
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
@ -29,7 +29,8 @@ Is $(\mathbb{Z}_5, -)$ a group? \par
|
||||
|
||||
|
||||
\problem{}
|
||||
Show that $(\mathbb{R}, \times)$ is not a group, then make it one by modifying $\mathbb{R}$. \par
|
||||
Show that $(\mathbb{R}, \times)$ is not a group,
|
||||
then find a subset $S$ of $\mathbb{R}$ so that $(S, \times)$ is a group.
|
||||
|
||||
\begin{solution}
|
||||
$(\mathbb{R}, \times)$ is not a group because $0$ has no inverse. \par
|
||||
@ -58,8 +59,8 @@ What is the smallest group we can create?
|
||||
|
||||
\problem{}
|
||||
Let $(G, \ast)$ be a group with finitely many elements, and let $a \in G$. \par
|
||||
Show that $\exists n \in \mathbb{Z}^+$ so that $a^n = e$ \par
|
||||
\hint{$a^n = a \ast a \ast ... \ast a$ repeated $n$ times.}
|
||||
Show that there exists an $n$ in $\mathbb{Z}^+$ so that $a^n = e$ \par
|
||||
\hint{$a^n \coloneqq a \ast a \ast ... \ast a$, with $a$ repeated $n$ times.}
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
@ -77,8 +78,9 @@ What is the order of 2 in $(\mathbb{Z}_{17}^\times, \times)$? \par
|
||||
\theorem{}
|
||||
Let $p$ be a prime number. \par
|
||||
In any group $(\mathbb{Z}_p^\times, \ast)$ there exists a $g \in \mathbb{Z}_p^\times$ where...
|
||||
\begin{itemize}
|
||||
\item The order of $g$ is $p - 1$
|
||||
|
||||
\begin{itemize}[itemsep=1mm]
|
||||
\item The order of $g$ is $p - 1$, and
|
||||
\item $\{a^0,~ a^1,~ ...,~ a^{p - 2}\} = \mathbb{Z}_n^\times$
|
||||
\end{itemize}
|
||||
We call such a $g$ a \textit{generator}, since its powers generate every other element in the group.
|
||||
|
@ -21,7 +21,7 @@ Show that $\exp$ is a bijection, which will guarantee the existence of $\log$. \
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
What's the simplest (but not the most efficient) way to calculate $\log_g(a)$?
|
||||
Find a simple (but perhaps inefficient) way to calculate $\log_g(a)$
|
||||
|
||||
\vfill
|
||||
|
||||
|
@ -86,7 +86,10 @@ Eve can read all public values, but she cannot change them in any way.
|
||||
|
||||
\problem{}
|
||||
Complete the algorithm. What should Alice and Bob compute? \par
|
||||
What is their shared secret?
|
||||
\hint{
|
||||
The goal of this process is to arrive at a \textit{shared secret} \par
|
||||
That is, Alice and Bob should arrive at the same value without exposing it to Eve.
|
||||
}
|
||||
|
||||
\vfill
|
||||
|
||||
|
@ -182,5 +182,6 @@ $\gcd(ac + b, a) = \gcd(a, b)$ \par
|
||||
[Note on \ref{eua_runtime}] This proof can be used to show that the Euclidean
|
||||
algorithm finishes in logarithmic time, and it is the first practical application
|
||||
of the Fibonacci numbers. If you have finished all challenge problems,
|
||||
finish the proof: show that the Euclidean algorithm runs in $O(\log{n})$
|
||||
finish the proof: find how many steps the Euclidean algorithm needs to arrive at
|
||||
a solution for a given $a$ and $b$.
|
||||
\pagebreak
|
Loading…
x
Reference in New Issue
Block a user