Crypto edits
This commit is contained in:
@ -3,6 +3,12 @@
|
||||
\definition{}
|
||||
$\mathbb{Z}_n$ is the set of integers mod $n$. For example, $\mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$. \par
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
Multiplication in $\mathbb{Z}_n$ works much like multiplication in $\mathbb{Z}$: \par
|
||||
If $a, b$ are elements of $\mathbb{Z}_n$, $a \times b$ is the remainder of $a \times b$ when divided by $n$. \par
|
||||
\note{For example, $2 \times 2 = 4$ and $3 \times 4 = 12 = 2$ in $\mathbb{Z}_5$}
|
||||
|
||||
\problem{}
|
||||
Create a multiplication table for $\mathbb{Z}_4$:
|
||||
|
||||
@ -37,12 +43,25 @@ $a$ has an inverse in $\mathbb{Z}_n$ iff $\gcd(a, n) = 1$ \par
|
||||
Find the inverse of $3$ in $\mathbb{Z}_4$, if one exists. \par
|
||||
Find the inverse of $20$ in $\mathbb{Z}_{14}$, if one exists. \par
|
||||
Find the inverse of $4$ in $\mathbb{Z}_7$, if one exists.
|
||||
|
||||
\begin{solution}
|
||||
\begin{itemize}
|
||||
\item $3^{-1}$ in $\mathbb{Z}_{4}$ is $3$
|
||||
\item $20^{-1}$ in $\mathbb{Z}_{14}$ doesn't exist.
|
||||
\item $4^{-1}$ in $\mathbb{Z}_{7}$ is $2$
|
||||
\end{itemize}
|
||||
\end{solution}
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
\problem{}
|
||||
Today, we will often assume that $n$ is prime. \par
|
||||
Why? What is special about $\mathbb{Z}_n$ with a prime $n$?
|
||||
Show that if $n$ is not prime, $\mathbb{Z}_n$ has at least one element with no inverse.
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Is this true if $n$ is prime?
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
Reference in New Issue
Block a user