Added gate section

This commit is contained in:
Mark 2024-02-06 10:15:51 -08:00
parent 6f67a702b6
commit 87dfc9ae4f
Signed by: Mark
GPG Key ID: C6D63995FE72FD80
3 changed files with 339 additions and 4 deletions

View File

@ -17,7 +17,8 @@
% use the [solutions] flag to show solutions. % use the [solutions] flag to show solutions.
\documentclass[ \documentclass[
solutions, solutions,
singlenumbering singlenumbering,
unfinished
]{../../resources/ormc_handout} ]{../../resources/ormc_handout}
\usepackage{../../resources/macros} \usepackage{../../resources/macros}
@ -30,7 +31,7 @@
\uptitlel{Advanced 2} \uptitlel{Advanced 2}
\uptitler{Winter 2022} \uptitler{Winter 2022}
\title{Intro to Quantum Computing I} \title{Intro to Quantum Computing}
\subtitle{Prepared by \githref{Mark} on \today{}} \subtitle{Prepared by \githref{Mark} on \today{}}
@ -42,7 +43,7 @@
\input{parts/00.01 two bits} \input{parts/00.01 two bits}
\input{parts/02.00 half a qubit} \input{parts/02.00 half a qubit}
\input{parts/02.01 two halves} \input{parts/02.01 two halves}
%\input{parts/03.00 gates} \input{parts/03.00 logic gates}
%\input{parts/03.01 and a gate} %\input{parts/03.01 quantum gates}
\end{document} \end{document}

View File

@ -0,0 +1,313 @@
\section{Logic Gates}
Now that we know how to write vectored bits, let's look at the ways we can change them.
\definition{Matrices}
A few weeks ago, we talked about matrices. Recall that every linear map may be written as a matrix,
and that every matrix represents a linear map. For example, if $f: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear
map, we can write it as follows:
\begin{equation*}
f\left(
\ket{x}
\right)
=
\begin{bmatrix}
m_1 & m_2 \\
m_3 & m_4
\end{bmatrix}
\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}
=
\left[
\begin{matrix}
m_1x_1 + m_2x_2 \\
m_3x_1 + m_4x_2
\end{matrix}
\right]
\end{equation*}
\definition{}
Before discussing quantum gates, we need to review to classical logic. \par
Of course, a classical logic gate is a linear map from $\mathbb{B}^m$ to $\mathbb{B}^n$
\problem{}<notgatex>
The \texttt{not} gate is a map from $\mathbb{B}$ to $\mathbb{B}$ defined by the following table: \par
\begin{itemize}
\item $X\ket{0} = \ket{1}$
\item $X\ket{1} = \ket{0}$
\end{itemize}
Write the \texttt{not} gate as a matrix that operates on single-bit vector states. \par
That is, find a matrix $X$ so that
$
X\left[\begin{smallmatrix} 1 \\ 0 \end{smallmatrix}\right]
= \left[\begin{smallmatrix} 0 \\ 1 \end{smallmatrix}\right]
$
and
$
X\left[\begin{smallmatrix} 0 \\ 1 \end{smallmatrix}\right]
= \left[\begin{smallmatrix} 1 \\ 0 \end{smallmatrix}\right]
$ \par
\begin{solution}
\begin{equation*}
X = \begin{bmatrix}
0 & 1 \\ 1 & 0
\end{bmatrix}
\end{equation*}
\end{solution}
\vfill
\problem{}
The \texttt{and} gate is a map $\mathbb{B}^2 \to \mathbb{B}$ defined by the following table:
\begin{center}
\begin{tabular}{ c | c | c }
\hline
\texttt{a} & \texttt{b} & \texttt{a} and \texttt{b} \\
\hline
0 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 1 & 1
\end{tabular}
\end{center}
Find a matrix $A$ so that $A\ket{\texttt{ab}}$ works as expected. \par
\begin{solution}
\begin{equation*}
A = \begin{bmatrix}
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\end{equation*}
\begin{instructornote}
Because of the way we represent bits here, we also have the following property: \par
The columns of $A$ correspond to the output for each input---i.e, $A$ is just a table of outputs. \par
\vspace{2mm}
For example, if we look at the first column of $A$ (which is $[1, 0]$), we see: \par
$A\ket{00} = A[1,0,0,0] = [1,0] = \ket{0}$
\vspace{2mm}
Also with the last column (which is $[0,1]$): \par
$A\ket{00} = A[0,0,0,1] = [0,1] = \ket{1}$
\end{instructornote}
\end{solution}
\vfill
\pagebreak
\generic{Remark:}
The way a quantum circuit handles information is a bit different than the way a classical circuit does.
We usually think of logic gates as \textit{functions}: they consume some set of bits, and return another:
\begin{center}
\begin{tikzpicture}[circuit logic US, scale=2]
\node[and gate] (and) at (0,-0.8) {\tiny\texttt{and}};
\draw[->] ([shift={(-0.5, 0)}] and.input 1) node[left] {\texttt{input A}} -- ([shift={(-0.25, 0)}]and.input 1);
\draw[->] ([shift={(-0.5, 0)}] and.input 2) node[left] {\texttt{input B}} -- ([shift={(-0.25, 0)}]and.input 2);
\draw ([shift={(-0.25, 0)}] and.input 1) -- (and.input 1);
\draw ([shift={(-0.25, 0)}] and.input 2) -- (and.input 2);
\draw[->] (and.output) -- ([shift={(0.5, 0)}] and.output) node[right] {\texttt{output}};
\end{tikzpicture}
\end{center}
This model, however, won't work for quantum logic. If we want to understand quantum gates, we need to see them
not as \textit{functions}, but as \textit{transformations}. This distinction is subtle, but significant:
\begin{itemize}
\item functions \textit{consume} a set of inputs and \textit{produce} a set of outputs
\item transformations \textit{change} a set of objects, without adding or removing any elements
\end{itemize}
\vspace{2mm}
Our usual logic circuit notation models logic gates as functions---we thus can't use it. \par
We'll need a different diagram to draw quantum circuits. \par
\vfill
First, we'll need a set of bits. For this example, we'll use two, drawn in a vertical array. \par
We'll also add a horizontal time axis, moving from left to right:
\begin{center}
\begin{tikzpicture}[scale=1]
\node[qubit] (a) at (0, 0) {\texttt{0}};
\node[qubit] (b) at (0, -1) {\texttt{0}};
\draw[wire] (a) -- ([shift={(4, 0)}] a.center) node[qubit] {\texttt{0}};
\draw[wire] (b) -- ([shift={(4, 0)}] b.center) node[qubit] {\texttt{0}};
\draw[
color = oblue,
->>,
line width = 0.5mm
] (-1,-1.5) -- (5, -1.5);
\node[fill=white, text=oblue] at (2, -1.5) {\texttt{time axis}};
\node[left, gray] at (-1, -0.5) {State of each bit at start};
\node[right, gray] at (5, -0.5) {State of each bit at end};
\draw[
->,
color = gray,
line width = 0.2mm,
rounded corners = 2mm
]
(-1, -0.5) -- (-0.8, -0.5) -- (-0.8, 0) --(a)
;
\draw[
->,
color = gray,
line width = 0.2mm,
rounded corners = 2mm
]
(-1, -0.5) -- (-0.8, -0.5) -- (-0.8, -1) -- (b)
;
\draw[
<-,
color = gray,
line width = 0.2mm,
rounded corners = 2mm
]
(4.2, 0) -- (4.8, 0) -- (4.8, -0.5) -- (5, -0.5)
;
\draw[
<-,
color = gray,
line width = 0.2mm,
rounded corners = 2mm
]
(4.2, -1) -- (4.8, -1) -- (4.8, -0.5) -- (5, -0.5)
;
\end{tikzpicture}
\end{center}
In the diagram above, we didn't change our bits---so the labels at the start match those at the end.
\vfill
Thus, our circuit forms a grid, with bits ordered vertically and time horizontally. \par
If we want to change our state, we draw transformations as vertical boxes. \par
Every column represents a single transformation on the entire state:
\begin{center}
\begin{tikzpicture}[scale=1]
\node[qubit] (a) at (0, 0) {\texttt{1}};
\node[qubit] (b) at (0, -1) {\texttt{0}};
\draw[wire] (a) -- ([shift={(5, 0)}] a.center) node[qubit] {\texttt{0}};
\draw[wire] (b) -- ([shift={(5, 0)}] b.center) node[qubit] {\texttt{1}};
\ghostqubox{a}{1}{b}{2}{$T_1$}
\ghostqubox{a}{2}{b}{3}{$T_2$}
\ghostqubox{a}{3}{b}{4}{$T_3$}
\end{tikzpicture}
\end{center}
Note that the transformations above span the whole state. This is important: \par
we cannot apply transformations to individual bits---we always transform the \textit{entire} state.
\vfill
\pagebreak
\generic{Setup:}
Say we want to invert the first bit of a two-bit state. That is, we want a transformation $T$ so that \par
\begin{center}
\begin{tikzpicture}[scale=0.8]
\node[qubit] (a) at (0, 0) {\texttt{a}};
\node[qubit] (b) at (0, -1) {\texttt{b}};
\draw[wire] (a) -- ([shift={(4, 0)}] a.center) node[qubit] {\texttt{not a}};
\draw[wire] (b) -- ([shift={(4, 0)}] b.center) node[qubit] {\texttt{b}};
\qubox{a}{1.5}{b}{2.5}{$T$}
\end{tikzpicture}
\end{center}
In other words, we want a matrix $T$ satisfying the following equalities:
\begin{itemize}
\item $T\ket{00} = \ket{10}$
\item $T\ket{01} = \ket{11}$
\item $T\ket{10} = \ket{00}$
\item $T\ket{11} = \ket{01}$
\end{itemize}
\problem{}
Find the matrix that corresponds to the above transformation. \par
\hint{
Remember that
$\ket{0} = \left[\begin{smallmatrix} 1 \\ 0 \end{smallmatrix}\right]$ and
$\ket{1} = \left[\begin{smallmatrix} 0 \\ 1 \end{smallmatrix}\right]$ \\
Also, we found earlier that $X = \left[\begin{smallmatrix} 0 && 1 \\ 1 && 0 \end{smallmatrix}\right]$,
and of course $I = \left[\begin{smallmatrix} 1 && 0 \\ 0 && 1 \end{smallmatrix}\right]$.
}
\begin{solution}
\begin{equation*}
T = \begin{bmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
\end{bmatrix}
\end{equation*}
\end{solution}
\vfill
\generic{Remark:}
We could draw the above transformation as a combination $X$ and $I$ (identity) gate:
\begin{center}
\begin{tikzpicture}[scale=0.8]
\node[qubit] (a) at (0, 0) {$\ket{0}$};
\node[qubit] (b) at (0, -1) {$\ket{0}$};
\draw[wire] (a) -- ([shift={(3, 0)}] a.center) node[qubit] {$\ket{1}$};
\draw[wire] (b) -- ([shift={(3, 0)}] b.center) node[qubit] {$\ket{0}$};
\qubox{a}{1}{a}{2}{$X$}
\qubox{b}{1}{b}{2}{$I$}
\end{tikzpicture}
\end{center}
We can even omit the $I$ gate, since we now know that transforms affect the whole state. \par
Of course, empty spaces always imply an $I$ gate.
\begin{center}
\begin{tikzpicture}[scale=0.8]
\node[qubit] (a) at (0, 0) {$\ket{0}$};
\node[qubit] (b) at (0, -1) {$\ket{0}$};
\draw[wire] (a) -- ([shift={(3, 0)}] a.center) node[qubit] {$\ket{1}$};
\draw[wire] (b) -- ([shift={(3, 0)}] b.center) node[qubit] {$\ket{0}$};
\qubox{a}{1}{a}{2}{$X$}
\end{tikzpicture}
\end{center}
We're now done: this is how we draw quantum circuits.
Don't forget that transformations \textit{always} affect the whole state---even if our diagram doesn't explicitly state this.
\pagebreak
% TODO:
% distributive property of tensor product
% quantum gate algebra

View File

@ -56,3 +56,24 @@
; ;
\node at ($([shift={(#2,0)}] #1)!0.5!([shift={(#4,0)}] #3)$) {#5}; \node at ($([shift={(#2,0)}] #1)!0.5!([shift={(#4,0)}] #3)$) {#5};
} }
\def\ghostqubox#1#2#3#4#5{
% 1: point ne
% 2: point ne x offset
% 3: point sw
% 4: point sw x offset
% 5: label text
\draw[
line width = 1,
fill = white,
draw = gray,
dashed
]
([shift={(#2 + 0.1, 0.4)}] #1.center)
-- ([shift={(#2 + 0.1, -0.4)}] #1.center |- #3.center)
-- ([shift={(#4 - 0.1, -0.4)}] #3.center)
-- ([shift={(#4 - 0.1, 0.4)}] #1.center -| #3.center)
-- cycle
;
\node[gray] at ($([shift={(#2,0)}] #1)!0.5!([shift={(#4,0)}] #3)$) {#5};
}