Added lattice handout
This commit is contained in:
		
							
								
								
									
										49
									
								
								Advanced/Lattices/parts/0 intro.tex
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										49
									
								
								Advanced/Lattices/parts/0 intro.tex
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,49 @@
 | 
			
		||||
\definition{}
 | 
			
		||||
The \textit{integer lattice} $\mathbb{Z}^n \subset \mathbb{R}^n$ is the set of points with integer coordinates. We call each point in the lattice a \textit{lattice point}.
 | 
			
		||||
 | 
			
		||||
\problem{}
 | 
			
		||||
Draw $\mathbb{Z}^2$.
 | 
			
		||||
 | 
			
		||||
\vfill
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\definition{}
 | 
			
		||||
We say a set of vectors $\{v_1, v_2, ..., v_n\}$ \textit{generates} $\mathbb{Z}^n$ if every lattice point can be written uniquely as
 | 
			
		||||
$$
 | 
			
		||||
	a_1v_1 + a_2v_2 + ... a_nv_n
 | 
			
		||||
$$
 | 
			
		||||
for integer coeficcients $a_i$.
 | 
			
		||||
 | 
			
		||||
\problem{}
 | 
			
		||||
Which of the following generate $\mathbb{Z}^3$?
 | 
			
		||||
\begin{itemize}
 | 
			
		||||
	\item $\{ (1,2), (2,1) \}$
 | 
			
		||||
	\item $\{ (1,0), (0,2) \}$
 | 
			
		||||
	\item $\{ (1,1), (1,0), (0,1) \}$
 | 
			
		||||
\end{itemize}
 | 
			
		||||
 | 
			
		||||
\vfill
 | 
			
		||||
 | 
			
		||||
\problem{}
 | 
			
		||||
Find a set of vectors that generates $\mathbb{Z}^2$.
 | 
			
		||||
 | 
			
		||||
\vfill
 | 
			
		||||
 | 
			
		||||
\problem{}
 | 
			
		||||
Find a set of vectors that generates $\mathbb{Z}^n$.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\vfill
 | 
			
		||||
\pagebreak
 | 
			
		||||
 | 
			
		||||
\problem{}
 | 
			
		||||
A \textit{fundamental region} of a lattice is the parallelepiped spanned by a generating set. The exact shape of this region depends on the generating set we use.
 | 
			
		||||
 | 
			
		||||
\vfill
 | 
			
		||||
 | 
			
		||||
\problem{}
 | 
			
		||||
Draw two fundamental reions of $\mathbb{Z}^2$ using two different generating sets. Verify that their volumes are the same.
 | 
			
		||||
 | 
			
		||||
\vfill
 | 
			
		||||
\pagebreak
 | 
			
		||||
		Reference in New Issue
	
	Block a user