Added lattice handout
This commit is contained in:
49
Advanced/Lattices/parts/0 intro.tex
Normal file
49
Advanced/Lattices/parts/0 intro.tex
Normal file
@ -0,0 +1,49 @@
|
||||
\definition{}
|
||||
The \textit{integer lattice} $\mathbb{Z}^n \subset \mathbb{R}^n$ is the set of points with integer coordinates. We call each point in the lattice a \textit{lattice point}.
|
||||
|
||||
\problem{}
|
||||
Draw $\mathbb{Z}^2$.
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
\definition{}
|
||||
We say a set of vectors $\{v_1, v_2, ..., v_n\}$ \textit{generates} $\mathbb{Z}^n$ if every lattice point can be written uniquely as
|
||||
$$
|
||||
a_1v_1 + a_2v_2 + ... a_nv_n
|
||||
$$
|
||||
for integer coeficcients $a_i$.
|
||||
|
||||
\problem{}
|
||||
Which of the following generate $\mathbb{Z}^3$?
|
||||
\begin{itemize}
|
||||
\item $\{ (1,2), (2,1) \}$
|
||||
\item $\{ (1,0), (0,2) \}$
|
||||
\item $\{ (1,1), (1,0), (0,1) \}$
|
||||
\end{itemize}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Find a set of vectors that generates $\mathbb{Z}^2$.
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Find a set of vectors that generates $\mathbb{Z}^n$.
|
||||
|
||||
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
\problem{}
|
||||
A \textit{fundamental region} of a lattice is the parallelepiped spanned by a generating set. The exact shape of this region depends on the generating set we use.
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Draw two fundamental reions of $\mathbb{Z}^2$ using two different generating sets. Verify that their volumes are the same.
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
Reference in New Issue
Block a user