From cb80d5be969140ba4bdb7e8643992b23914da0dc Mon Sep 17 00:00:00 2001 From: Mark Date: Mon, 19 Jun 2023 20:24:33 -0700 Subject: [PATCH] Added equivalence problems --- Advanced/Definable Sets/main.tex | 1 + .../Definable Sets/parts/1 structures.tex | 2 +- .../Definable Sets/parts/4 equivalence.tex | 55 +++++++++++++++++++ 3 files changed, 57 insertions(+), 1 deletion(-) create mode 100644 Advanced/Definable Sets/parts/4 equivalence.tex diff --git a/Advanced/Definable Sets/main.tex b/Advanced/Definable Sets/main.tex index 5191cfa..4f30d21 100755 --- a/Advanced/Definable Sets/main.tex +++ b/Advanced/Definable Sets/main.tex @@ -21,5 +21,6 @@ \input{parts/1 structures.tex} \input{parts/2 quantifiers.tex} \input{parts/3 sets.tex} + \input{parts/4 equivalence.tex} \end{document} \ No newline at end of file diff --git a/Advanced/Definable Sets/parts/1 structures.tex b/Advanced/Definable Sets/parts/1 structures.tex index 6a5e103..b9e6958 100644 --- a/Advanced/Definable Sets/parts/1 structures.tex +++ b/Advanced/Definable Sets/parts/1 structures.tex @@ -14,7 +14,7 @@ A structure's symbols give meaning to the objects in its universe. \vspace{2mm} -Symbols generally come in three types: +Symbols come in three types: \begin{itemize} \item Constant symbols, which let us specify specific elements of our universe. \par Examples: $0, 1, \frac{1}{2}, \pi$ diff --git a/Advanced/Definable Sets/parts/4 equivalence.tex b/Advanced/Definable Sets/parts/4 equivalence.tex new file mode 100644 index 0000000..06f31ec --- /dev/null +++ b/Advanced/Definable Sets/parts/4 equivalence.tex @@ -0,0 +1,55 @@ +\section{Equivalence (Bonus)} + +\generic{Notation:} +Let $S$ be a structure and $\varphi$ a formula. \par +If $\varphi$ is true in $S$, we write $S \models \varphi$. + +\definition{} +Let $S$ and $T$ be structures. \par +We say $S$ and $T$ are \textit{equivalent} and write $S \equiv T$ if for any formula $\varphi$, $S \models \varphi \Longleftrightarrow T \models \varphi$. + +\problem{} +Show that $ + \Bigl(\mathbb{Z} ~\big|~ \{ +, 0 \}\Bigr) + \not\equiv + \Bigl(\mathbb{R} ~\big|~ \{ +, 0 \}\Bigr) +$ +\vfill + +\problem{} +Show that $ + \Bigl(\mathbb{Z} ~\big|~ \{ +, 0 \}\Bigr) + \not\equiv + \Bigl(\mathbb{N} ~\big|~ \{ +, 0 \}\Bigr) +$ +\vfill + +\problem{} +Show that $ + \Bigl(\mathbb{R} ~\big|~ \{ +, 0 \}\Bigr) + \not\equiv + \Bigl(\mathbb{N} ~\big|~ \{ +, 0 \}\Bigr) +$ +\vfill + +\problem{} +Show that $ + \Bigl(\mathbb{R} ~\big|~ \{ +, 0 \}\Bigr) + \not\equiv + \Bigl(\mathbb{Z}^2 ~\big|~ \{ +, 0 \}\Bigr) +$ +\vfill + +\problem{} +Show that $ + \Bigl(\mathbb{Z} ~\big|~ \{ +, 0 \}\Bigr) + \not\equiv + \Bigl(\mathbb{Z}^2 ~\big|~ \{ +, 0 \}\Bigr) +$ + +\begin{solution} + All of the above are easy, but the last one can take a while. \par + The trick is to notice that $\mathbb{Z}$ has two equivalence classes mod 2, while $\mathbb{Z}^2$ has four. +\end{solution} + +\vfill \ No newline at end of file