Added a problem
This commit is contained in:
parent
dfadd23e63
commit
7c2398bcf5
@ -101,4 +101,26 @@
|
|||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
\pagebreak
|
||||||
|
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Let $f$ be a function from a set $X$ to a set $Y$. We say $f$ is \textit{injective} if $f(x) = f(y) \implies x = y$. \par
|
||||||
|
We say $f$ is \textit{surjective} if for all $y \in Y$ there exists an $x \in X$ so that $f(x) = y$. \par
|
||||||
|
Let $A, B, C$ be sets, and let $f: A \to B$, $g: B \to C$ be functions. Let $h = g \circ f$.
|
||||||
|
|
||||||
|
\vspace{2mm}
|
||||||
|
\begin{itemize}
|
||||||
|
\item Show that if $h$ is injective, $f$ must be injective and $g$ may not be injective.
|
||||||
|
\item Show that if $h$ is surjective, $g$ must be surjective and $f$ may not be surjective.
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
\pagebreak
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
\end{document}
|
\end{document}
|
Loading…
x
Reference in New Issue
Block a user