Post-class fixes
This commit is contained in:
parent
f2ba5bf1b3
commit
759e7e05f6
@ -51,7 +51,7 @@ Find the following:
|
|||||||
\begin{solution}
|
\begin{solution}
|
||||||
In order from $\mathcal{S}_0$ to $\mathcal{S}_6$:
|
In order from $\mathcal{S}_0$ to $\mathcal{S}_6$:
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item 1, 2, 3, 3, 3, 2, 1
|
\item 1, 2, 3, 4, 3, 2, 1
|
||||||
\item 1, 3, 5, 4, 3, 2, 1
|
\item 1, 3, 5, 4, 3, 2, 1
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
\end{solution}
|
\end{solution}
|
||||||
@ -167,9 +167,10 @@ We'll call this the \textit{Fibonacci word} of order $k$.
|
|||||||
\problem{}<cword>
|
\problem{}<cword>
|
||||||
Let $C_k$ denote the word over the alphabet $\{\texttt{0}, \texttt{1}\}$ obtained by \par
|
Let $C_k$ denote the word over the alphabet $\{\texttt{0}, \texttt{1}\}$ obtained by \par
|
||||||
concatenating the binary representations of the integers $0,~...,~2^k -1$. \par
|
concatenating the binary representations of the integers $0,~...,~2^k -1$. \par
|
||||||
For example, $C_1 = \texttt{0}$, $C_2 = \texttt{011011}$, and $C_3 = \texttt{011011100101110111}$.
|
For example, $C_1 = \texttt{01}$, $C_2 = \texttt{011011}$, and $C_3 = \texttt{011011100101110111}$.
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item How many symbols does the word $C_k$ contain?
|
% Good bonus problem, hard to find a closed-form solution
|
||||||
|
% \item How many symbols does the word $C_k$ contain?
|
||||||
\item Compute $\mathcal{S}_0$, $\mathcal{S}_1$, $\mathcal{S}_2$, and $\mathcal{S}_3$ for $C_3$.
|
\item Compute $\mathcal{S}_0$, $\mathcal{S}_1$, $\mathcal{S}_2$, and $\mathcal{S}_3$ for $C_3$.
|
||||||
\item Show that $\mathcal{S}_k(C_k) = 2^k - 1$.
|
\item Show that $\mathcal{S}_k(C_k) = 2^k - 1$.
|
||||||
\item Show that $\mathcal{S}_n(C_k) = 2^n$ for $n < k$.
|
\item Show that $\mathcal{S}_n(C_k) = 2^n$ for $n < k$.
|
||||||
|
@ -31,9 +31,9 @@ A \textit{path} in a graph is a sequence of adjacent edges, \par
|
|||||||
In a directed graph, edges $a$ and $b$ are adjacent if $a$ ends at the node which $b$ starts at. \par
|
In a directed graph, edges $a$ and $b$ are adjacent if $a$ ends at the node which $b$ starts at. \par
|
||||||
\vspace{2mm}
|
\vspace{2mm}
|
||||||
For example, consider the graph above. \par
|
For example, consider the graph above. \par
|
||||||
The edges $0$ and $1$ are not adjacent, because $0$ and $1$ both \textit{end} at $b$. \par
|
The edges $1$ and $0$ are adjacent, since you can take edge $0$ after taking edge $1$. \par
|
||||||
$0$ and $2$, however, are: $0$ ends at $b$, and $2$ starts at $b$.
|
$0$ starts where $1$ ends. \par
|
||||||
$[0, 3, 2]$ is a path in the graph above, drawn below. \par
|
$0$ and $1$, however, are not: $1$ does not start at the edge at which $0$ ends.
|
||||||
|
|
||||||
|
|
||||||
\definition{}
|
\definition{}
|
||||||
@ -81,6 +81,7 @@ still hold, but the following exceptions are allowed:
|
|||||||
\item There may be at most one node where $(\text{number in} - \text{number out}) = 1$
|
\item There may be at most one node where $(\text{number in} - \text{number out}) = 1$
|
||||||
\item There may be at most one node where $(\text{number in} - \text{number out}) = -1$
|
\item There may be at most one node where $(\text{number in} - \text{number out}) = -1$
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
\note[Note]{Either both exceptions occur, or neither occurs. Bonus problem: why?}
|
||||||
We won't provide a proof of this theorem today. However, you should convince yourself that it is true:
|
We won't provide a proof of this theorem today. However, you should convince yourself that it is true:
|
||||||
if any of these conditions are violated, why do we know that an Eulerian cycle (or path) cannot exist?
|
if any of these conditions are violated, why do we know that an Eulerian cycle (or path) cannot exist?
|
||||||
|
|
||||||
@ -276,6 +277,8 @@ Draw $G_4$.
|
|||||||
\end{itemize}
|
\end{itemize}
|
||||||
\end{solution}
|
\end{solution}
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
\problem{}<dbpath>
|
\problem{}<dbpath>
|
||||||
Show that $G_4$ always contains an Eulerian path. \par
|
Show that $G_4$ always contains an Eulerian path. \par
|
||||||
\hint{\ref{eulerexists}}
|
\hint{\ref{eulerexists}}
|
||||||
|
@ -36,22 +36,23 @@ Have an instructor check your solution.
|
|||||||
\begin{center}
|
\begin{center}
|
||||||
\begin{tikzpicture}
|
\begin{tikzpicture}
|
||||||
\begin{scope}[layer = nodes]
|
\begin{scope}[layer = nodes]
|
||||||
\node[main] (0) at (0, 0) {$0$};
|
\node[main] (1) at (0, 0) {$1$};
|
||||||
\node[main] (1) at (2, -4) {$1$};
|
\node[main] (4) at (3.5, 1) {$4$};
|
||||||
\node[main] (2) at (0, -2) {$2$};
|
\node[main] (3) at (2, 0) {$3$};
|
||||||
\node[main] (3) at (2, -2) {$3$};
|
\node[main] (2) at (2, 2) {$2$};
|
||||||
\node[main] (4) at (2, 0) {$4$};
|
\node[main] (0) at (0, 2) {$0$};
|
||||||
\end{scope}
|
\end{scope}
|
||||||
|
|
||||||
\draw[->]
|
\draw[->]
|
||||||
(0) edge[bend left] (2)
|
(0) edge[bend left] (1)
|
||||||
(2) edge[bend left] (0)
|
(1) edge[bend left] (0)
|
||||||
(0) edge (4)
|
(0) edge (2)
|
||||||
|
(2) edge (3)
|
||||||
|
(2) edge[bend left] (4)
|
||||||
(4) edge[bend left] (2)
|
(4) edge[bend left] (2)
|
||||||
(2) edge (1)
|
(3) edge (1)
|
||||||
(1) edge[bend left] (3)
|
(4) edge (3)
|
||||||
(3) edge[bend left] (1)
|
(4) edge[loop right] (4)
|
||||||
(3) edge (0)
|
|
||||||
;
|
;
|
||||||
\end{tikzpicture}
|
\end{tikzpicture}
|
||||||
\end{center}
|
\end{center}
|
||||||
|
@ -176,7 +176,7 @@ Show that each of the following is possible:
|
|||||||
Construct $R_2$ by removing one edge from $G_2$, then construct $\mathcal{L}(R_2)$. \par
|
Construct $R_2$ by removing one edge from $G_2$, then construct $\mathcal{L}(R_2)$. \par
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item If this line graph has four edges, set $R_3 = \mathcal{L}(R_2)$. \par
|
\item If this line graph has four edges, set $R_3 = \mathcal{L}(R_2)$. \par
|
||||||
\item If not, remove one edge from $R_2$ so that an Eulerian path still exists
|
\item If not, remove one edge from $\mathcal{L}(R_2)$ so that an Eulerian path still exists
|
||||||
and set $R_3$ to the resulting graph.
|
and set $R_3$ to the resulting graph.
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
Label each edge in $R_3$ with the last letter of its target node. \par
|
Label each edge in $R_3$ with the last letter of its target node. \par
|
||||||
|
Loading…
x
Reference in New Issue
Block a user