Added finance sections
This commit is contained in:
parent
a1df6a6327
commit
7301f7c8c3
@ -86,5 +86,7 @@
|
|||||||
|
|
||||||
\input{parts/0 intro}
|
\input{parts/0 intro}
|
||||||
\input{parts/1 call}
|
\input{parts/1 call}
|
||||||
|
\input{parts/2 put}
|
||||||
|
\input{parts/3 compound}
|
||||||
|
|
||||||
\end{document}
|
\end{document}
|
@ -1,5 +1,19 @@
|
|||||||
\section{Introduction}
|
\section{Introduction}
|
||||||
|
|
||||||
|
\definition{}
|
||||||
|
An \textit{asset} is any resource that has economic value.\par
|
||||||
|
Examples: gold, oil, grain, cash, real estate, treasury bonds, etc
|
||||||
|
|
||||||
|
\definition{}
|
||||||
|
A \textit{stock} is a particular type of asset.
|
||||||
|
A share of stock represents \say{partial ownership} of a corporation.
|
||||||
|
Like many assets, stocks are \textit{intangible}---they only exist on paper.
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Let $\mathbb{X}$ be a stock, currently priced at $19\Rub$. \par
|
||||||
|
Bogdan buys 10 shares of $\mathbb{X}$, and sells them after a month for $23\Rub$ per share. \par
|
||||||
|
What was his net profit?
|
||||||
|
|
||||||
|
|
||||||
\vfill
|
\vfill
|
||||||
\pagebreak
|
\pagebreak
|
@ -5,7 +5,7 @@ A \textit{call option} is an agreement between a buyer (B) and a seller (S): \pa
|
|||||||
|
|
||||||
\begin{contract}[frametitle={Contract: Call Option}]
|
\begin{contract}[frametitle={Contract: Call Option}]
|
||||||
B pays S a premium $p$. \par
|
B pays S a premium $p$. \par
|
||||||
In return, S agrees to sell B a certain commodity $\mathbb{X}$ for a fixed price $k$ at a future time $t$.
|
In return, S agrees to sell B a certain stock $\mathbb{X}$ for a fixed \say{strike price} $k$ at a future time $t$.
|
||||||
\end{contract}
|
\end{contract}
|
||||||
|
|
||||||
|
|
||||||
@ -13,7 +13,7 @@ A \textit{call option} is an agreement between a buyer (B) and a seller (S): \pa
|
|||||||
|
|
||||||
\problem{}<firstcall>
|
\problem{}<firstcall>
|
||||||
B has ten call options for $\mathbb{X}$ at $23\Rub$. The current price of $\mathbb{X}$ is $20\Rub$. \par
|
B has ten call options for $\mathbb{X}$ at $23\Rub$. The current price of $\mathbb{X}$ is $20\Rub$. \par
|
||||||
How much profit can B make if these contracts expire when $\mathbb{X}$ is $30\Rub$? \par
|
How much profit can B make if these contracts expire when $\mathbb{X}$ is worth $30\Rub$? \par
|
||||||
\hint{When the contract expires, B can buy 10 shares of $\mathbb{X}$ at the price the contract set.}
|
\hint{When the contract expires, B can buy 10 shares of $\mathbb{X}$ at the price the contract set.}
|
||||||
|
|
||||||
\begin{solution}
|
\begin{solution}
|
||||||
@ -51,14 +51,12 @@ How much profit would B have made?
|
|||||||
|
|
||||||
|
|
||||||
\vfill
|
\vfill
|
||||||
|
|
||||||
Given the results of the previous problems, why would anybody buy a call option?
|
|
||||||
\pagebreak
|
\pagebreak
|
||||||
|
|
||||||
|
|
||||||
\problem{}
|
\problem{}
|
||||||
Suppose $\mathbb{X}$ is worth $x_0$ right now. \par
|
Suppose $\mathbb{X}$ is worth $x_0$ right now. \par
|
||||||
Call options to buy $\mathbb{X}$ at $k$ are sold for $p$.
|
Call options to buy $\mathbb{X}$ at strike price $k$ are sold for $p$.
|
||||||
|
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item What is the set of B's possible profit if..
|
\item What is the set of B's possible profit if..
|
||||||
@ -66,10 +64,13 @@ Call options to buy $\mathbb{X}$ at $k$ are sold for $p$.
|
|||||||
\item B buys a call option?
|
\item B buys a call option?
|
||||||
\item B buys $\mathbb{X}$ directly?
|
\item B buys $\mathbb{X}$ directly?
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
\hint{That is, what amounts of money can he make (or lose)?}
|
\hint{That is, what amounts of money can B make (or lose)?}
|
||||||
|
|
||||||
\item Are call options priced above or below the price of their stock? Why?
|
\item Are call options priced above or below the price of their stock? Why?
|
||||||
\item Why would anybody buy a call option?
|
\item On the previous page, we saw that the profit
|
||||||
|
made on a call option was much lower than the profit
|
||||||
|
made by buying a stock directly.
|
||||||
|
Why would anybody buy a call option?
|
||||||
|
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
@ -96,21 +97,79 @@ Call options to buy $\mathbb{X}$ at $k$ are sold for $p$.
|
|||||||
|
|
||||||
\problem{}
|
\problem{}
|
||||||
Suppose $\mathbb{X}$ is worth $x_0$ right now. \par
|
Suppose $\mathbb{X}$ is worth $x_0$ right now. \par
|
||||||
Call options to buy $\mathbb{X}$ at $k$ are sold for $p$. \par
|
Call options to buy $\mathbb{X}$ for $k$ are sold for $p$. \par
|
||||||
|
|
||||||
\vspace{2mm}
|
\vspace{2mm}
|
||||||
Assume that S owns no stock---if B executes his contracts, she will buy stock and re-sell it to him. \par
|
Assume that S owns no stock---if B executes his contracts, she will buy stock and resell it to him. \par
|
||||||
What are S's possible profits if she sells B a call option?
|
What are S's possible profits if she sells B a call option?
|
||||||
|
|
||||||
\begin{solution}
|
\begin{solution}
|
||||||
$(-\infty, ~p]$
|
$(-\infty, ~p]$\par
|
||||||
|
If the price of $\mathbb{X}$ rises, S will have to resell shares to B at a loss.
|
||||||
If the price of $\mathbb{X}$ rises, S will have to re-sell shares to B at a loss. \par
|
If the price falls, B could choose to buy shares from S at a loss, but he won't.
|
||||||
If the price falls, B could choose to buy shares from S at a loss, but he won't. \par
|
|
||||||
In this case, S only keeps the premium B paid for the contract.
|
In this case, S only keeps the premium B paid for the contract.
|
||||||
\end{solution}
|
\end{solution}
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
\pagebreak
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
How does the price of $\mathbb{X}$ at $t$ relate to the amount of
|
||||||
|
profit B and S make? Complete the plots below.
|
||||||
|
|
||||||
|
\null\hfill
|
||||||
|
\begin{minipage}{0.48\textwidth}
|
||||||
|
\begin{center}
|
||||||
|
\begin{tikzpicture}
|
||||||
|
\draw (0,0) -- (5, 0);
|
||||||
|
\draw (0,-2) -- (0, 2);
|
||||||
|
|
||||||
|
\node at (2.5, 2) {Profit plot for $B$};
|
||||||
|
|
||||||
|
|
||||||
|
\node[
|
||||||
|
anchor = south,
|
||||||
|
rotate = 90
|
||||||
|
] at (0,0) {\color{gray}Profit};
|
||||||
|
|
||||||
|
\node[
|
||||||
|
anchor = south west,
|
||||||
|
] at (0, 0) {\color{gray}Price of $\mathbb{X}$ at $t$};
|
||||||
|
|
||||||
|
\node[anchor = north] at (3, 0) {$k$};
|
||||||
|
\filldraw (3, 0) circle (0.5mm);
|
||||||
|
\end{tikzpicture}
|
||||||
|
\end{center}
|
||||||
|
\end{minipage}
|
||||||
|
\hfill
|
||||||
|
\begin{minipage}{0.48\textwidth}
|
||||||
|
\begin{center}
|
||||||
|
\begin{tikzpicture}
|
||||||
|
\draw (0,0) -- (5, 0);
|
||||||
|
\draw (0,-2) -- (0, 2);
|
||||||
|
|
||||||
|
\node at (2.5, 2) {Profit plot for $S$};
|
||||||
|
|
||||||
|
\node[
|
||||||
|
anchor = south,
|
||||||
|
rotate = 90
|
||||||
|
] at (0,0) {\color{gray}Profit};
|
||||||
|
|
||||||
|
\node[
|
||||||
|
anchor = south west,
|
||||||
|
] at (0, 0) {\color{gray}Price of $\mathbb{X}$ at $t$};
|
||||||
|
|
||||||
|
\node[anchor = north] at (3, 0) {$k$};
|
||||||
|
\filldraw (3, 0) circle (0.5mm);
|
||||||
|
\end{tikzpicture}
|
||||||
|
\end{center}
|
||||||
|
\end{minipage}
|
||||||
|
\hfill\null
|
||||||
|
|
||||||
|
When does B make a positive profit? When does S? \par
|
||||||
|
Write an equation that calculates S and B's earnings given
|
||||||
|
$p$, $k$, and the price of $\mathbb{X}$ at the time the contract expires.
|
||||||
|
|
||||||
|
|
||||||
\vfill
|
\vfill
|
||||||
|
|
||||||
\pagebreak
|
\pagebreak
|
55
Advanced/Options in Finance/parts/2 put.tex
Normal file
55
Advanced/Options in Finance/parts/2 put.tex
Normal file
@ -0,0 +1,55 @@
|
|||||||
|
\section{Put Options}
|
||||||
|
|
||||||
|
\definition{}
|
||||||
|
A \textit{put option} is an agreement between a buyer (B) and a seller (S): \par
|
||||||
|
|
||||||
|
\begin{contract}[frametitle={Contract: Put Option}]
|
||||||
|
B pays S a premium $p$. \par
|
||||||
|
In return, S agrees to buy a certain stock $\mathbb{X}$ from S for a fixed \say{strike price} $k$ at a future time $t$,
|
||||||
|
if B decides to exercise this contract.
|
||||||
|
\end{contract}
|
||||||
|
|
||||||
|
As before, the \textbf{buyer} decides whether or not this contract is put into action. \par
|
||||||
|
Also, note that B does not need to own any shares of stock to buy a put option. \par
|
||||||
|
He may buy them whenever he wishes.
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
How is a put different from a call? \par
|
||||||
|
What is S betting on? What is B betting on?
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Suppose B paid $100\Rub$ for 300 put contracts on $\mathbb{X}$ at $17\Rub$.\par
|
||||||
|
At time the contracts expired, the price of $\mathbb{X}$ was $20\Rub$.\par
|
||||||
|
What is B's profit?
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Plot profit curves for selling a put option, buying a put option,
|
||||||
|
and buying a stock directly on the axis below.
|
||||||
|
|
||||||
|
\begin{center}
|
||||||
|
\begin{tikzpicture}
|
||||||
|
\draw (0,0) -- (10, 0);
|
||||||
|
\draw (0,-3) -- (0, 3);
|
||||||
|
|
||||||
|
|
||||||
|
\node[
|
||||||
|
anchor = south,
|
||||||
|
rotate = 90
|
||||||
|
] at (0,0) {\color{gray}Profit};
|
||||||
|
|
||||||
|
\node[
|
||||||
|
anchor = south west,
|
||||||
|
] at (0, 0) {\color{gray}Price of $\mathbb{X}$ at $t$};
|
||||||
|
|
||||||
|
\node[anchor = north] at (6, 0) {$k$};
|
||||||
|
\filldraw (6, 0) circle (0.5mm);
|
||||||
|
\end{tikzpicture}
|
||||||
|
\end{center}
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
\pagebreak
|
||||||
|
|
76
Advanced/Options in Finance/parts/3 compound.tex
Normal file
76
Advanced/Options in Finance/parts/3 compound.tex
Normal file
@ -0,0 +1,76 @@
|
|||||||
|
\section{Compound Strategies}
|
||||||
|
|
||||||
|
\definition{}
|
||||||
|
A \textit{covered call} is a trading strategy where one simultaneously
|
||||||
|
buys a share of stock and sells a call option. When the contract
|
||||||
|
expires, the stock is sold to the call buyer (if they choose
|
||||||
|
to exercise their contract) or to the market (if they don't).
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Say we set up a covered call by buying a share of $\mathbb{X}$ for $x_0$
|
||||||
|
and selling a call option for $\mathbb{X}$ at $k$ for $p$. \par
|
||||||
|
When our contract expires, $\mathbb{X}$
|
||||||
|
is worth $x_1$.
|
||||||
|
|
||||||
|
\vspace{2mm}
|
||||||
|
|
||||||
|
What is the gross profit of a covered call?\par
|
||||||
|
What is its net profit?\par
|
||||||
|
\hint{Gross profit does not take setup cost into account. Net profit does.}
|
||||||
|
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
\definition{}
|
||||||
|
We say that trading strategy $A$ \textit{simulates} trading strategy
|
||||||
|
$B$ if their net profits are equal.
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
Find a trading strategy that buys stock and call options
|
||||||
|
to simulate a single put option with strike price $k$.
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
A \textit{straddle} is a trading strategy where one buys a call and a put
|
||||||
|
with the same strike price and expiration. Plot the profit curve. \par
|
||||||
|
What do you bet on when you buy a straddle?
|
||||||
|
|
||||||
|
\begin{center}
|
||||||
|
\begin{tikzpicture}
|
||||||
|
\draw (0,0) -- (10, 0);
|
||||||
|
\draw (0,-3) -- (0, 3);
|
||||||
|
|
||||||
|
\node[
|
||||||
|
anchor = south,
|
||||||
|
rotate = 90
|
||||||
|
] at (0,0) {\color{gray}Profit};
|
||||||
|
|
||||||
|
\node[
|
||||||
|
anchor = south west,
|
||||||
|
] at (0, 0) {\color{gray}Price of $\mathbb{X}$ at $t$};
|
||||||
|
|
||||||
|
\node[anchor = north] at (5, 0) {$k$};
|
||||||
|
\filldraw (5, 0) circle (0.5mm);
|
||||||
|
\end{tikzpicture}
|
||||||
|
\end{center}
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
\pagebreak
|
||||||
|
|
||||||
|
\definition{}
|
||||||
|
A \textit{butterfly spread} is a trading strategy where one buys two
|
||||||
|
calls with strike prices $k_1$ and $k_2$ and sells two calls with strike
|
||||||
|
prices $\frac{k_1+k_2}{2}$.
|
||||||
|
|
||||||
|
\problem{}
|
||||||
|
When should you set up a butterfly spread? \par
|
||||||
|
Find the payoff function.
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
|
||||||
|
|
||||||
|
\vfill
|
||||||
|
\pagebreak
|
||||||
|
|
Loading…
x
Reference in New Issue
Block a user