Edits
This commit is contained in:
		@ -32,13 +32,18 @@
 | 
				
			|||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					% This handout is pretty difficult. Make sure you can all solve all the problems yourself,
 | 
				
			||||||
 | 
					% and remember that each SECTION was a two-hour lesson with a smart class.
 | 
				
			||||||
 | 
					% From experience, the following holds:
 | 
				
			||||||
 | 
					% supremum is a better lesson than dual numbers, which is better than extensions.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
\begin{document}
 | 
					\begin{document}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	\maketitle
 | 
						\maketitle
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						\input{parts/supremum}
 | 
				
			||||||
	\input{parts/1 extensions}
 | 
						\input{parts/dual}
 | 
				
			||||||
	\input{parts/2 dual}
 | 
						\input{parts/extensions}
 | 
				
			||||||
	\input{parts/x supremum}
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
\end{document}
 | 
					\end{document}
 | 
				
			||||||
 | 
				
			|||||||
@ -21,8 +21,7 @@ In the problems below, let $\varepsilon$ a positive infinitesimal so that $\vare
 | 
				
			|||||||
\note{Note that $\varepsilon \neq 0$.}
 | 
					\note{Note that $\varepsilon \neq 0$.}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
\definition{}
 | 
					\definition{}
 | 
				
			||||||
The set of \textit{dual numbers} is a nonarchimedian extension of $\mathbb{R}$ \par
 | 
					The set of \textit{dual numbers} consists of elements of the form $a + b\varepsilon$, where $a, b \in \mathbb{R}$.
 | 
				
			||||||
that consists of elements of the form $a + b\varepsilon$, where $a, b \in \mathbb{R}$.
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
\problem{}
 | 
					\problem{}
 | 
				
			||||||
Compute $(a + b\varepsilon) \times (c + d\varepsilon)$.
 | 
					Compute $(a + b\varepsilon) \times (c + d\varepsilon)$.
 | 
				
			||||||
@ -33,11 +32,7 @@ Compute $(a + b\varepsilon) \times (c + d\varepsilon)$.
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
\definition{}
 | 
					\definition{}
 | 
				
			||||||
Let $f(x)$ be an algebraic function $\mathbb{R} \to \mathbb{R}$. \par
 | 
					Let $f(x)$ be an algebraic function $\mathbb{R} \to \mathbb{R}$. \par
 | 
				
			||||||
(that is, a function we can write using the operators $+-\times\div$, powers, and roots) \par
 | 
					(that is, a function we can write using the operators $+-\times\div$ and integer powers) \par
 | 
				
			||||||
\note[Note]{
 | 
					 | 
				
			||||||
	Why this condition? These are the only operations we have in an ordered field! \\
 | 
					 | 
				
			||||||
	Powers, roots, and division aren't directly available, but are fairly easy to define.
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
\vspace{2mm}
 | 
					\vspace{2mm}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -13,7 +13,7 @@
 | 
				
			|||||||
% If you edit this, please give credit!
 | 
					% If you edit this, please give credit!
 | 
				
			||||||
% Quality handouts take time to make.
 | 
					% Quality handouts take time to make.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
\section{Nonarchimedian Extensions}
 | 
					\section{Extensions of $\mathbb{R}$}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
\definition{}
 | 
					\definition{}
 | 
				
			||||||
An \textit{ordered field} consists of a set $S$, the operations $+$ and $\times$, and the relation $<$. \par
 | 
					An \textit{ordered field} consists of a set $S$, the operations $+$ and $\times$, and the relation $<$. \par
 | 
				
			||||||
@ -49,7 +49,16 @@ An ordered field must satisfy the following properties:
 | 
				
			|||||||
\end{itemize}
 | 
					\end{itemize}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
\definition{}
 | 
					\definition{}
 | 
				
			||||||
An ordered field that contains $\mathbb{R}$ is called a \textit{nonarchimedian extension} of $\mathbb{R}$.
 | 
					An ordered field that contains $\mathbb{R}$ is called an \textit{extension} of $\mathbb{R}$.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\definition{}
 | 
				
			||||||
 | 
					The \textit{Archimedian property} states the following: \par
 | 
				
			||||||
 | 
					For all positive $x, y$, there exists an $n$ so that $nx \geq y$.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\theorem{}
 | 
				
			||||||
 | 
					All extensions of $\mathbb{R}$ are nonarchemedian. \par
 | 
				
			||||||
 | 
					Proving this is difficult.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
\vfill
 | 
					\vfill
 | 
				
			||||||
\pagebreak
 | 
					\pagebreak
 | 
				
			||||||
@ -71,7 +80,8 @@ Which of the following are ordered fields?
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
\problem{}
 | 
					\problem{}
 | 
				
			||||||
Show that each of the following is true in any ordered field.
 | 
					Show that each of the following is true in any ordered field. \par
 | 
				
			||||||
 | 
					The list of field axioms is provided below, for convenience.
 | 
				
			||||||
\begin{enumerate}
 | 
					\begin{enumerate}
 | 
				
			||||||
	\item if $x \neq 0$ then $(x^{-1})^{-1} = x$
 | 
						\item if $x \neq 0$ then $(x^{-1})^{-1} = x$
 | 
				
			||||||
	\item $0 \times x = 0$
 | 
						\item $0 \times x = 0$
 | 
				
			||||||
@ -89,8 +99,36 @@ Show that each of the following is true in any ordered field.
 | 
				
			|||||||
%	And thus $(x^{-1})^{-1} = x$
 | 
					%	And thus $(x^{-1})^{-1} = x$
 | 
				
			||||||
%\end{solution}
 | 
					%\end{solution}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					 | 
				
			||||||
\vfill
 | 
					\vfill
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					\begin{itemize}
 | 
				
			||||||
 | 
						\item \textbf{Properties of $+$:}
 | 
				
			||||||
 | 
						\begin{itemize}
 | 
				
			||||||
 | 
							\item Commutativity: $a + b = b + a$
 | 
				
			||||||
 | 
							\item Associativity: $a + (b + c) = (a + b) + c$
 | 
				
			||||||
 | 
							\item Identity: there exists an element $0$ so that $a + 0 = a$ for all $a \in S$
 | 
				
			||||||
 | 
							\item Inverse: for every $a$, there exists a $-a$ so that $a + (-a) = 0$
 | 
				
			||||||
 | 
						\end{itemize}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						\item \textbf{Properties of $\times$:}
 | 
				
			||||||
 | 
						\begin{itemize}
 | 
				
			||||||
 | 
							\item Commutativity
 | 
				
			||||||
 | 
							\item Associativity
 | 
				
			||||||
 | 
							\item Identity (which we label $1$)
 | 
				
			||||||
 | 
							\item For every $a \neq 0$, there exists an inverse $a^{-1}$ so that $aa^{-1} = 1$
 | 
				
			||||||
 | 
							\item Distributivity: $a(b + c) = ab + ac$
 | 
				
			||||||
 | 
						\end{itemize}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
						\item \textbf{Properties of $<$:}
 | 
				
			||||||
 | 
						\begin{itemize}
 | 
				
			||||||
 | 
							\item Non-reflexive: $x < x$ is always false
 | 
				
			||||||
 | 
							\item Transitive: $x < y$ and $y < z$ imply $x < z$
 | 
				
			||||||
 | 
							\item Connected: for all $x, y \in S$, either $x < y$, $x > y$, or $x = y$.
 | 
				
			||||||
 | 
							\item If $x < y$ then $x + z < y + z$
 | 
				
			||||||
 | 
							\item If $x < y$ and $z > 0$, then $xz < yz$
 | 
				
			||||||
 | 
							\item $0 < 1$
 | 
				
			||||||
 | 
						\end{itemize}
 | 
				
			||||||
 | 
					\end{itemize}
 | 
				
			||||||
\pagebreak
 | 
					\pagebreak
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -14,7 +14,7 @@
 | 
				
			|||||||
% Quality handouts take time to make.
 | 
					% Quality handouts take time to make.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
\section*{Bonus: The supremum \& infimum}
 | 
					\section*{The supremum \& the infimum}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
\definition{}
 | 
					\definition{}
 | 
				
			||||||
In this section, we'll define a \say{real number} as a decimal, infinite or finite.
 | 
					In this section, we'll define a \say{real number} as a decimal, infinite or finite.
 | 
				
			||||||
		Reference in New Issue
	
	Block a user