Edits
This commit is contained in:
103
Advanced/Nonstandard Analysis/parts/dual.tex
Normal file
103
Advanced/Nonstandard Analysis/parts/dual.tex
Normal file
@ -0,0 +1,103 @@
|
||||
% Copyright (C) 2023 <Mark (mark@betalupi.com)>
|
||||
%
|
||||
% This program is free software: you can redistribute it and/or modify
|
||||
% it under the terms of the GNU General Public License as published by
|
||||
% the Free Software Foundation, either version 3 of the License, or
|
||||
% (at your option) any later version.
|
||||
%
|
||||
% You may have received a copy of the GNU General Public License
|
||||
% along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
%
|
||||
%
|
||||
%
|
||||
% If you edit this, please give credit!
|
||||
% Quality handouts take time to make.
|
||||
|
||||
|
||||
\section{Dual Numbers}
|
||||
|
||||
\definition{}
|
||||
In the problems below, let $\varepsilon$ a positive infinitesimal so that $\varepsilon^2 = 0$. \par
|
||||
\note{Note that $\varepsilon \neq 0$.}
|
||||
|
||||
\definition{}
|
||||
The set of \textit{dual numbers} consists of elements of the form $a + b\varepsilon$, where $a, b \in \mathbb{R}$.
|
||||
|
||||
\problem{}
|
||||
Compute $(a + b\varepsilon) \times (c + d\varepsilon)$.
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
|
||||
\definition{}
|
||||
Let $f(x)$ be an algebraic function $\mathbb{R} \to \mathbb{R}$. \par
|
||||
(that is, a function we can write using the operators $+-\times\div$ and integer powers) \par
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
the \textit{derivative} of such an $f$ is a function $f'$ that satisfies the following:
|
||||
\begin{equation*}
|
||||
f(x + \varepsilon) = f(x) + f'(x)\varepsilon
|
||||
\end{equation*}
|
||||
If $f(x + \varepsilon)$ is not defined, we will say that $f$ is not \textit{differentiable} at $x$.
|
||||
|
||||
\problem{}
|
||||
What is the derivative of $f(x) = x^2$?
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
What is the derivative of $f(x) = x^n$?
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Assume that the derivatives of $f$ and $g$ are known. \par
|
||||
Find the derivatives of $h(x) = f(x) + g(x)$ and $k(x) = f(x) \times g(x)$.
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
When can you divide dual numbers? \par
|
||||
That is, for what numbers $(a + b\varepsilon)$ is there a $(x + y\varepsilon)$ such that $(a +b\varepsilon)(x+y\varepsilon) = 1$?
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Find an explicit formula for the inverse of a dual number $(a + b\varepsilon)$, assuming one exists. \par
|
||||
Then, use this find the derivative of $f(x) = \frac{1}{x}$.
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Which dual numbers have a square root? \par
|
||||
That is, for which dual numbers $(a + b\varepsilon)$ is there a dual number
|
||||
$(x + y\varepsilon)$ such that $(x + y\varepsilon)^2 = a + b\varepsilon$?
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Find an explicit formula for the square root and use it to find the derivative of $f(x) = \sqrt{x}$
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Find the derivative of the following functions:
|
||||
\begin{itemize}
|
||||
\item $f(x) = \frac{x}{1 + x^2}$
|
||||
\item $g(x) = \sqrt{1 - x^2}$
|
||||
\end{itemize}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Assume that the derivatives of $f$ and $g$ are known. \par
|
||||
What is the derivative of $f(g(x))$?
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
Reference in New Issue
Block a user