Improved graph theory handout
This commit is contained in:
237
Intermediate/An Introduction to Graph Theory/parts/1 paths.tex
Normal file
237
Intermediate/An Introduction to Graph Theory/parts/1 paths.tex
Normal file
@ -0,0 +1,237 @@
|
||||
\section{Paths and cycles}
|
||||
|
||||
A \textit{path} in a graph is, intuitively, a sequence of edges: $(x_1, x_2, x_4, ... )$. \par
|
||||
I've highlighted one possible path in the graph below.
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[
|
||||
node distance={15mm},
|
||||
thick,
|
||||
main/.style = {draw, circle}
|
||||
]
|
||||
|
||||
\node[main] (1) {$x_1$};
|
||||
\node[main] (2) [above right of=1] {$x_2$};
|
||||
\node[main] (3) [below right of=1] {$x_3$};
|
||||
\node[main] (4) [above right of=3] {$x_4$};
|
||||
\node[main] (5) [above right of=4] {$x_5$};
|
||||
\node[main] (6) [below right of=4] {$x_6$};
|
||||
\node[main] (7) [below right of=5] {$x_7$};
|
||||
|
||||
\draw[-] (1) -- (2);
|
||||
\draw[-] (1) -- (3);
|
||||
\draw[-] (2) -- (5);
|
||||
\draw[-] (2) -- (4);
|
||||
\draw[-] (3) -- (6);
|
||||
\draw[-] (3) -- (4);
|
||||
\draw[-] (4) -- (5);
|
||||
\draw[-] (5) -- (7);
|
||||
\draw[-] (6) -- (7);
|
||||
|
||||
\draw [
|
||||
line width=2mm,
|
||||
draw=black,
|
||||
opacity=0.4
|
||||
] (1) -- (2) -- (4) -- (3) -- (6);
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
A \textit{cycle} is a path that starts and ends on the same vertex:
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[
|
||||
node distance={15mm},
|
||||
thick,
|
||||
main/.style = {draw, circle}
|
||||
]
|
||||
|
||||
\node[main] (1) {$x_1$};
|
||||
\node[main] (2) [above right of=1] {$x_2$};
|
||||
\node[main] (3) [below right of=1] {$x_3$};
|
||||
\node[main] (4) [above right of=3] {$x_4$};
|
||||
\node[main] (5) [above right of=4] {$x_5$};
|
||||
\node[main] (6) [below right of=4] {$x_6$};
|
||||
\node[main] (7) [below right of=5] {$x_7$};
|
||||
|
||||
\draw[-] (1) -- (2);
|
||||
\draw[-] (1) -- (3);
|
||||
\draw[-] (2) -- (5);
|
||||
\draw[-] (2) -- (4);
|
||||
\draw[-] (3) -- (6);
|
||||
\draw[-] (3) -- (4);
|
||||
\draw[-] (4) -- (5);
|
||||
\draw[-] (5) -- (7);
|
||||
\draw[-] (6) -- (7);
|
||||
|
||||
\draw[
|
||||
line width=2mm,
|
||||
draw=black,
|
||||
opacity=0.4
|
||||
] (2) -- (4) -- (3) -- (6) -- (7) -- (5) -- (2);
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
|
||||
A \textit{Eulerian\footnotemark} path is a path that traverses each edge exactly once. \par
|
||||
A Eulerian cycle is a cycle that does the same.
|
||||
|
||||
\footnotetext{Pronounced ``oiler-ian''. These terms are named after a Swiss mathematician, Leonhard Euler (1707-1783), who is usually considered the founder of graph theory.}
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
Similarly, a {\it Hamiltonian} path is a path in a graph that visits each vertex exactly once, \par
|
||||
and a Hamiltonian cycle is a closed Hamiltonian path.
|
||||
|
||||
\medskip
|
||||
|
||||
An example of a Hamiltonian path is below.
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[
|
||||
node distance={15mm},
|
||||
thick,
|
||||
main/.style = {draw, circle}
|
||||
]
|
||||
|
||||
\node[main] (1) {$x_1$};
|
||||
\node[main] (2) [above right of=1] {$x_2$};
|
||||
\node[main] (3) [below right of=1] {$x_3$};
|
||||
\node[main] (4) [above right of=3] {$x_4$};
|
||||
\node[main] (5) [above right of=4] {$x_5$};
|
||||
\node[main] (6) [below right of=4] {$x_6$};
|
||||
\node[main] (7) [below right of=5] {$x_7$};
|
||||
|
||||
\draw[-] (1) -- (2);
|
||||
\draw[-] (1) -- (3);
|
||||
\draw[-] (2) -- (5);
|
||||
\draw[-] (2) -- (4);
|
||||
\draw[-] (3) -- (6);
|
||||
\draw[-] (3) -- (4);
|
||||
\draw[-] (4) -- (5);
|
||||
\draw[-] (5) -- (7);
|
||||
\draw[-] (6) -- (7);
|
||||
|
||||
\draw [
|
||||
line width=2mm,
|
||||
draw=black,
|
||||
opacity=0.4
|
||||
] (1) -- (2) -- (4) -- (3) -- (6) -- (7) -- (5);
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
\definition{}
|
||||
We say a graph is \textit{connected} if there is a path between every pair of vertices. A graph is called \textit{disconnected} otherwise.
|
||||
|
||||
\problem{}
|
||||
Draw a disconnected graph with four vertices. \par
|
||||
Then, draw a graph with four vertices, all of degree one.
|
||||
\vfill
|
||||
|
||||
|
||||
\problem{}
|
||||
Find a Hamiltonian cycle in the following graph.
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[
|
||||
node distance={20mm},
|
||||
thick,
|
||||
main/.style = {draw, circle}
|
||||
]
|
||||
|
||||
\node[main] (1) {$x_1$};
|
||||
\node[main] (2) [above right of=1] {$x_2$};
|
||||
\node[main] (3) [below right of=1] {$x_3$};
|
||||
\node[main] (4) [above right of=3] {$x_4$};
|
||||
\node[main] (5) [above right of=4] {$x_5$};
|
||||
\node[main] (6) [below right of=4] {$x_6$};
|
||||
\node[main] (7) [below right of=5] {$x_7$};
|
||||
|
||||
\draw[-] (1) -- (2);
|
||||
\draw[-] (1) -- (3);
|
||||
\draw[-] (2) -- (5);
|
||||
\draw[-] (2) -- (4);
|
||||
\draw[-] (3) -- (6);
|
||||
\draw[-] (3) -- (4);
|
||||
\draw[-] (4) -- (5);
|
||||
\draw[-] (5) -- (7);
|
||||
\draw[-] (6) -- (7);
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
\problem{}
|
||||
Is there an Eulerian path in the following graph? \par
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[
|
||||
node distance={20mm},
|
||||
thick,
|
||||
main/.style = {draw, circle}
|
||||
]
|
||||
|
||||
\node[main] (1) {$x_1$};
|
||||
\node[main] (2) [above right of=1] {$x_2$};
|
||||
\node[main] (3) [below right of=1] {$x_3$};
|
||||
\node[main] (4) [above right of=3] {$x_4$};
|
||||
\node[main] (5) [above right of=4] {$x_5$};
|
||||
\node[main] (6) [below right of=4] {$x_6$};
|
||||
\node[main] (7) [below right of=5] {$x_7$};
|
||||
|
||||
\draw[-] (1) -- (2);
|
||||
\draw[-] (1) -- (3);
|
||||
\draw[-] (2) -- (5);
|
||||
\draw[-] (2) -- (4);
|
||||
\draw[-] (3) -- (6);
|
||||
\draw[-] (3) -- (4);
|
||||
\draw[-] (4) -- (5);
|
||||
\draw[-] (5) -- (7);
|
||||
\draw[-] (6) -- (7);
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Is there an Eulerian path in the following graph? \par
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[
|
||||
node distance={20mm},
|
||||
thick,
|
||||
main/.style = {draw, circle}
|
||||
]
|
||||
|
||||
\node[main] (1) {$x_1$};
|
||||
\node[main] (2) [above right of=1] {$x_2$};
|
||||
\node[main] (3) [below right of=1] {$x_3$};
|
||||
\node[main] (4) [above right of=3] {$x_4$};
|
||||
\node[main] (5) [above right of=4] {$x_5$};
|
||||
\node[main] (6) [below right of=4] {$x_6$};
|
||||
\node[main] (7) [below right of=5] {$x_7$};
|
||||
|
||||
\draw[-] (1) -- (2);
|
||||
\draw[-] (1) -- (3);
|
||||
\draw[-] (2) -- (4);
|
||||
\draw[-] (3) -- (6);
|
||||
\draw[-] (3) -- (4);
|
||||
\draw[-] (4) -- (5);
|
||||
\draw[-] (5) -- (7);
|
||||
\draw[-] (6) -- (7);
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
When does an Eulerian path exist? \par
|
||||
\hint{Look at the degree of each node.}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
Reference in New Issue
Block a user