Improved graph theory handout
This commit is contained in:
127
Intermediate/An Introduction to Graph Theory/parts/0 intro.tex
Normal file
127
Intermediate/An Introduction to Graph Theory/parts/0 intro.tex
Normal file
@ -0,0 +1,127 @@
|
||||
\section{Graphs}
|
||||
|
||||
\definition{}
|
||||
A \textit{set} is an unordered collection of objects. \par
|
||||
This means that the sets $\{1, 2, 3\}$ and $\{3, 2, 1\}$ are identical.
|
||||
|
||||
|
||||
\definition{}
|
||||
A \textit{graph} $G = (N, E)$ consists of two sets: a set of \textit{vertices} $V$, and a set of \textit{edges} $E$. \par
|
||||
Verticies are simply named \say{points,} and edges are connections between pairs of vertices. \par
|
||||
In the graph below, $V = \{a, b, c, d\}$ and $E = \{~ (a,b),~ (a,c),~ (a,d),~ (c,d) ~\}$.
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}
|
||||
\begin{scope}[layer = nodes]
|
||||
\node[main] (a) at (0, 0) {$a$};
|
||||
\node[main] (b) at (0, -1) {$b$};
|
||||
\node[main] (c) at (2, -1) {$c$};
|
||||
\node[main] (d) at (4, 0) {$d$};
|
||||
\end{scope}
|
||||
|
||||
\draw[-]
|
||||
(a) edge (b)
|
||||
(a) edge (c)
|
||||
(a) edge (d)
|
||||
(c) edge (d)
|
||||
;
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
Vertices are also sometimes called \textit{nodes}. You'll see both terms in this handout. \par
|
||||
|
||||
|
||||
|
||||
\problem{}
|
||||
Draw the graph defined by the following vertex and edge sets: \par
|
||||
$V = \{A,B,C,D,E\}$ \par
|
||||
$E = \{~ (A,B),~ (A,C),~ (A,D),~ (A,E),~ (B,C),~ (C,D),~ (D,E) ~\}$\par
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
We can use graphs to solve many different kinds of problems. \par
|
||||
Most situations that involve some kind of \say{relation} between elements can be represented by a graph.
|
||||
|
||||
\pagebreak
|
||||
|
||||
|
||||
Graphs are fully defined by their vertices and edges. The exact position of each vertex and edge doesn't matter---only which nodes are connected to each other. The same graph can be drawn in many different ways.
|
||||
|
||||
|
||||
\problem{}
|
||||
Show that the graphs below are equivalent by comparing the sets of their vertices and edges.
|
||||
|
||||
\begin{center}
|
||||
\adjustbox{valign=c}{
|
||||
\begin{tikzpicture}
|
||||
\begin{scope}[layer = nodes]
|
||||
\node[main] (a) at (0, 0) {$a$};
|
||||
\node[main] (b) at (2, 0) {$b$};
|
||||
\node[main] (c) at (2, -2) {$c$};
|
||||
\node[main] (d) at (0, -2) {$d$};
|
||||
\end{scope}
|
||||
|
||||
\draw[-]
|
||||
(a) edge (b)
|
||||
(b) edge (c)
|
||||
(c) edge (d)
|
||||
(d) edge (a)
|
||||
(a) edge (c)
|
||||
(b) edge (d)
|
||||
;
|
||||
\end{tikzpicture}
|
||||
}
|
||||
\hspace{20mm}
|
||||
\adjustbox{valign=c}{
|
||||
\begin{tikzpicture}
|
||||
\begin{scope}[layer = nodes]
|
||||
\node[main] (a) at (0, 0) {$a$};
|
||||
\node[main] (b) at (-2, -2) {$b$};
|
||||
\node[main] (c) at (0, -2) {$c$};
|
||||
\node[main] (d) at (2, -2) {$d$};
|
||||
\end{scope}
|
||||
|
||||
\draw[-]
|
||||
(a) edge (b)
|
||||
(b) edge (c)
|
||||
(c) edge (d)
|
||||
(d) edge (a)
|
||||
(a) edge (c)
|
||||
(b) edge[out=270, in=270, looseness=1] (d)
|
||||
;
|
||||
\end{tikzpicture}
|
||||
}
|
||||
\end{center}
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
\definition{}
|
||||
The degree $D(v)$ of a vertex $v$ of a graph
|
||||
is the number of the edges of the graph
|
||||
connected to that vertex.
|
||||
|
||||
|
||||
\theorem{Handshake Lemma}<handshake>
|
||||
In any graph, the sum of the degrees of its vertices equals twice the number of the edges.
|
||||
|
||||
|
||||
\problem{}
|
||||
Prove \ref{handshake}.
|
||||
\vfill
|
||||
|
||||
|
||||
\problem{}
|
||||
Show that all graphs have an even number number of vertices with odd degree.
|
||||
\vfill
|
||||
|
||||
|
||||
\problem{}
|
||||
One girl tells another, \say{There are 25 kids
|
||||
in my class. Isn't it funny that each of them
|
||||
has 5 friends in the class?} \say{This cannot be true,} immediately replies the other girl.
|
||||
How did she know?
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
237
Intermediate/An Introduction to Graph Theory/parts/1 paths.tex
Normal file
237
Intermediate/An Introduction to Graph Theory/parts/1 paths.tex
Normal file
@ -0,0 +1,237 @@
|
||||
\section{Paths and cycles}
|
||||
|
||||
A \textit{path} in a graph is, intuitively, a sequence of edges: $(x_1, x_2, x_4, ... )$. \par
|
||||
I've highlighted one possible path in the graph below.
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[
|
||||
node distance={15mm},
|
||||
thick,
|
||||
main/.style = {draw, circle}
|
||||
]
|
||||
|
||||
\node[main] (1) {$x_1$};
|
||||
\node[main] (2) [above right of=1] {$x_2$};
|
||||
\node[main] (3) [below right of=1] {$x_3$};
|
||||
\node[main] (4) [above right of=3] {$x_4$};
|
||||
\node[main] (5) [above right of=4] {$x_5$};
|
||||
\node[main] (6) [below right of=4] {$x_6$};
|
||||
\node[main] (7) [below right of=5] {$x_7$};
|
||||
|
||||
\draw[-] (1) -- (2);
|
||||
\draw[-] (1) -- (3);
|
||||
\draw[-] (2) -- (5);
|
||||
\draw[-] (2) -- (4);
|
||||
\draw[-] (3) -- (6);
|
||||
\draw[-] (3) -- (4);
|
||||
\draw[-] (4) -- (5);
|
||||
\draw[-] (5) -- (7);
|
||||
\draw[-] (6) -- (7);
|
||||
|
||||
\draw [
|
||||
line width=2mm,
|
||||
draw=black,
|
||||
opacity=0.4
|
||||
] (1) -- (2) -- (4) -- (3) -- (6);
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
A \textit{cycle} is a path that starts and ends on the same vertex:
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[
|
||||
node distance={15mm},
|
||||
thick,
|
||||
main/.style = {draw, circle}
|
||||
]
|
||||
|
||||
\node[main] (1) {$x_1$};
|
||||
\node[main] (2) [above right of=1] {$x_2$};
|
||||
\node[main] (3) [below right of=1] {$x_3$};
|
||||
\node[main] (4) [above right of=3] {$x_4$};
|
||||
\node[main] (5) [above right of=4] {$x_5$};
|
||||
\node[main] (6) [below right of=4] {$x_6$};
|
||||
\node[main] (7) [below right of=5] {$x_7$};
|
||||
|
||||
\draw[-] (1) -- (2);
|
||||
\draw[-] (1) -- (3);
|
||||
\draw[-] (2) -- (5);
|
||||
\draw[-] (2) -- (4);
|
||||
\draw[-] (3) -- (6);
|
||||
\draw[-] (3) -- (4);
|
||||
\draw[-] (4) -- (5);
|
||||
\draw[-] (5) -- (7);
|
||||
\draw[-] (6) -- (7);
|
||||
|
||||
\draw[
|
||||
line width=2mm,
|
||||
draw=black,
|
||||
opacity=0.4
|
||||
] (2) -- (4) -- (3) -- (6) -- (7) -- (5) -- (2);
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
|
||||
A \textit{Eulerian\footnotemark} path is a path that traverses each edge exactly once. \par
|
||||
A Eulerian cycle is a cycle that does the same.
|
||||
|
||||
\footnotetext{Pronounced ``oiler-ian''. These terms are named after a Swiss mathematician, Leonhard Euler (1707-1783), who is usually considered the founder of graph theory.}
|
||||
|
||||
\vspace{2mm}
|
||||
|
||||
Similarly, a {\it Hamiltonian} path is a path in a graph that visits each vertex exactly once, \par
|
||||
and a Hamiltonian cycle is a closed Hamiltonian path.
|
||||
|
||||
\medskip
|
||||
|
||||
An example of a Hamiltonian path is below.
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[
|
||||
node distance={15mm},
|
||||
thick,
|
||||
main/.style = {draw, circle}
|
||||
]
|
||||
|
||||
\node[main] (1) {$x_1$};
|
||||
\node[main] (2) [above right of=1] {$x_2$};
|
||||
\node[main] (3) [below right of=1] {$x_3$};
|
||||
\node[main] (4) [above right of=3] {$x_4$};
|
||||
\node[main] (5) [above right of=4] {$x_5$};
|
||||
\node[main] (6) [below right of=4] {$x_6$};
|
||||
\node[main] (7) [below right of=5] {$x_7$};
|
||||
|
||||
\draw[-] (1) -- (2);
|
||||
\draw[-] (1) -- (3);
|
||||
\draw[-] (2) -- (5);
|
||||
\draw[-] (2) -- (4);
|
||||
\draw[-] (3) -- (6);
|
||||
\draw[-] (3) -- (4);
|
||||
\draw[-] (4) -- (5);
|
||||
\draw[-] (5) -- (7);
|
||||
\draw[-] (6) -- (7);
|
||||
|
||||
\draw [
|
||||
line width=2mm,
|
||||
draw=black,
|
||||
opacity=0.4
|
||||
] (1) -- (2) -- (4) -- (3) -- (6) -- (7) -- (5);
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
\definition{}
|
||||
We say a graph is \textit{connected} if there is a path between every pair of vertices. A graph is called \textit{disconnected} otherwise.
|
||||
|
||||
\problem{}
|
||||
Draw a disconnected graph with four vertices. \par
|
||||
Then, draw a graph with four vertices, all of degree one.
|
||||
\vfill
|
||||
|
||||
|
||||
\problem{}
|
||||
Find a Hamiltonian cycle in the following graph.
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[
|
||||
node distance={20mm},
|
||||
thick,
|
||||
main/.style = {draw, circle}
|
||||
]
|
||||
|
||||
\node[main] (1) {$x_1$};
|
||||
\node[main] (2) [above right of=1] {$x_2$};
|
||||
\node[main] (3) [below right of=1] {$x_3$};
|
||||
\node[main] (4) [above right of=3] {$x_4$};
|
||||
\node[main] (5) [above right of=4] {$x_5$};
|
||||
\node[main] (6) [below right of=4] {$x_6$};
|
||||
\node[main] (7) [below right of=5] {$x_7$};
|
||||
|
||||
\draw[-] (1) -- (2);
|
||||
\draw[-] (1) -- (3);
|
||||
\draw[-] (2) -- (5);
|
||||
\draw[-] (2) -- (4);
|
||||
\draw[-] (3) -- (6);
|
||||
\draw[-] (3) -- (4);
|
||||
\draw[-] (4) -- (5);
|
||||
\draw[-] (5) -- (7);
|
||||
\draw[-] (6) -- (7);
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\vfill
|
||||
\pagebreak
|
||||
|
||||
|
||||
\problem{}
|
||||
Is there an Eulerian path in the following graph? \par
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[
|
||||
node distance={20mm},
|
||||
thick,
|
||||
main/.style = {draw, circle}
|
||||
]
|
||||
|
||||
\node[main] (1) {$x_1$};
|
||||
\node[main] (2) [above right of=1] {$x_2$};
|
||||
\node[main] (3) [below right of=1] {$x_3$};
|
||||
\node[main] (4) [above right of=3] {$x_4$};
|
||||
\node[main] (5) [above right of=4] {$x_5$};
|
||||
\node[main] (6) [below right of=4] {$x_6$};
|
||||
\node[main] (7) [below right of=5] {$x_7$};
|
||||
|
||||
\draw[-] (1) -- (2);
|
||||
\draw[-] (1) -- (3);
|
||||
\draw[-] (2) -- (5);
|
||||
\draw[-] (2) -- (4);
|
||||
\draw[-] (3) -- (6);
|
||||
\draw[-] (3) -- (4);
|
||||
\draw[-] (4) -- (5);
|
||||
\draw[-] (5) -- (7);
|
||||
\draw[-] (6) -- (7);
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
Is there an Eulerian path in the following graph? \par
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[
|
||||
node distance={20mm},
|
||||
thick,
|
||||
main/.style = {draw, circle}
|
||||
]
|
||||
|
||||
\node[main] (1) {$x_1$};
|
||||
\node[main] (2) [above right of=1] {$x_2$};
|
||||
\node[main] (3) [below right of=1] {$x_3$};
|
||||
\node[main] (4) [above right of=3] {$x_4$};
|
||||
\node[main] (5) [above right of=4] {$x_5$};
|
||||
\node[main] (6) [below right of=4] {$x_6$};
|
||||
\node[main] (7) [below right of=5] {$x_7$};
|
||||
|
||||
\draw[-] (1) -- (2);
|
||||
\draw[-] (1) -- (3);
|
||||
\draw[-] (2) -- (4);
|
||||
\draw[-] (3) -- (6);
|
||||
\draw[-] (3) -- (4);
|
||||
\draw[-] (4) -- (5);
|
||||
\draw[-] (5) -- (7);
|
||||
\draw[-] (6) -- (7);
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
|
||||
|
||||
\vfill
|
||||
|
||||
\problem{}
|
||||
When does an Eulerian path exist? \par
|
||||
\hint{Look at the degree of each node.}
|
||||
|
||||
\vfill
|
||||
\pagebreak
|
Reference in New Issue
Block a user