Typo
This commit is contained in:
parent
b0e1083b7f
commit
6d5459eaf4
@ -201,7 +201,7 @@
|
|||||||
Now, derive the \textit{multinomial coefficient} $\binom{n}{k_1,k_2,...,k_m}$. \par
|
Now, derive the \textit{multinomial coefficient} $\binom{n}{k_1,k_2,...,k_m}$. \par
|
||||||
\vspace{1mm}
|
\vspace{1mm}
|
||||||
The multinomial coefficient tells us how many distinct ways there to arrange $n$ objects
|
The multinomial coefficient tells us how many distinct ways there to arrange $n$ objects
|
||||||
of $m$ classes, and where each class $i$ contains $k_i$ identical objects. \par
|
of $m$ classes, where each class $i$ contains $k_i$ identical objects. \par
|
||||||
\hint{
|
\hint{
|
||||||
In \ref{manyballs}, $n = 5$ and $(k_1, k_2, k_3, k_4) = (8, 3, 6, 4)$. \\
|
In \ref{manyballs}, $n = 5$ and $(k_1, k_2, k_3, k_4) = (8, 3, 6, 4)$. \\
|
||||||
So, the solution to \ref{manyballs} should be given by the multinomial coefficient $\binom{5}{8,3,6,4}$.
|
So, the solution to \ref{manyballs} should be given by the multinomial coefficient $\binom{5}{8,3,6,4}$.
|
||||||
|
Loading…
x
Reference in New Issue
Block a user