Edits
This commit is contained in:
		@ -17,9 +17,9 @@ For example, \texttt{11} is a subword of \texttt{011}, but \texttt{00} is not.
 | 
			
		||||
 | 
			
		||||
\definition{}
 | 
			
		||||
Recall \ref{lockproblem}. From now on, we'll call this the \textit{$n$-subword problem}: \par
 | 
			
		||||
Given an alphabet $A$ and a positive integer $n$, we want a \par
 | 
			
		||||
word over $A$ that contains all possible length-$n$ subwords. \par
 | 
			
		||||
The shortest word that solves a given $n$-subword problem is called the \textit{optimal solution}.
 | 
			
		||||
Given an alphabet $A$ and a positive integer $n$,
 | 
			
		||||
we want a word over $A$ that contains all possible length-$n$ subwords. \par
 | 
			
		||||
That shortest word that solves a given $n$-subword problem is called the \textit{optimal solution}.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -55,7 +55,7 @@ Find the following:
 | 
			
		||||
\vfill
 | 
			
		||||
\pagebreak
 | 
			
		||||
 | 
			
		||||
\problem{}
 | 
			
		||||
\problem{}<sbounds>
 | 
			
		||||
Let $w$ be a word over an alphabet of size $k$. \par
 | 
			
		||||
Prove the following:
 | 
			
		||||
\begin{itemize}
 | 
			
		||||
@ -148,7 +148,7 @@ We'll call this the \textit{Fibonacci word} of order $k$.
 | 
			
		||||
% C_k is called the "Champernowne word" of order k.
 | 
			
		||||
\problem{}<cword>
 | 
			
		||||
Let $C_k$ denote the word over the alphabet $\{\texttt{0}, \texttt{1}\}$ obtained by \par
 | 
			
		||||
concatenating the binary representations of the integers $0,~...,~2^k -1$.\par
 | 
			
		||||
concatenating the binary representations of the integers $0,~...,~2^k -1$. \par
 | 
			
		||||
For example, $C_1 = \texttt{0}$, $C_2 = \texttt{011011}$, and $C_3 = \texttt{011011100101110111}$.
 | 
			
		||||
\begin{itemize}
 | 
			
		||||
	\item How many symbols does the word $C_k$ contain?
 | 
			
		||||
 | 
			
		||||
@ -96,11 +96,11 @@ We'll call the optimal solution to this problem a \textit{De Bruijn\footnotemark
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\problem{}<dbbounds>
 | 
			
		||||
Let $\mathcal{B}_n$ be the length of an order-$n$ De Bruijn word. \par
 | 
			
		||||
Let $w$ be the an order-$n$ De Bruijn word, and denote its length with $|w|$. \par
 | 
			
		||||
Show that the following bounds always hold:
 | 
			
		||||
\begin{itemize}
 | 
			
		||||
	\item $\mathcal{B}_n \leq n2^n$
 | 
			
		||||
	\item $\mathcal{B}_n \geq 2^n + n - 1$
 | 
			
		||||
	\item $|w| \leq n2^n$
 | 
			
		||||
	\item $|w| \geq 2^n + n - 1$
 | 
			
		||||
\end{itemize}
 | 
			
		||||
 | 
			
		||||
\begin{solution}
 | 
			
		||||
@ -113,7 +113,7 @@ Show that the following bounds always hold:
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\remark{}
 | 
			
		||||
Now, we'd like to show that $\mathcal{B}_n = 2^n + n - 1$... \par
 | 
			
		||||
Now, we'd like to show that the length of a De Bruijn word is always $2^n + n - 1$... \par
 | 
			
		||||
That is, that the optimal solution to the subword problem always has $2^n + n - 1$ letters. \par
 | 
			
		||||
We'll do this by construction: for a given $n$, we want to build a word with length $2^n + n - 1$
 | 
			
		||||
that solves the binary $n$-subword problem.
 | 
			
		||||
@ -244,7 +244,7 @@ Draw $G_4$.
 | 
			
		||||
\end{solution}
 | 
			
		||||
 | 
			
		||||
\vfill
 | 
			
		||||
 | 
			
		||||
\pagebreak
 | 
			
		||||
 | 
			
		||||
\problem{}
 | 
			
		||||
\begin{itemize}
 | 
			
		||||
@ -268,8 +268,6 @@ Show that $G_4$ always contains an Eulerian path. \par
 | 
			
		||||
\hint{\ref{eulerexists}}
 | 
			
		||||
 | 
			
		||||
\vfill
 | 
			
		||||
\pagebreak
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\theorem{}<dbeuler>
 | 
			
		||||
We can now easily construct De Bruijn words for a given $n$: \par
 | 
			
		||||
@ -310,6 +308,7 @@ Find De Bruijn words of orders $2$, $3$, and $4$.
 | 
			
		||||
\end{solution}
 | 
			
		||||
 | 
			
		||||
\vfill
 | 
			
		||||
\pagebreak
 | 
			
		||||
 | 
			
		||||
Let's quickly show that the process described in \ref{dbeuler}
 | 
			
		||||
indeed produces a valid De Bruijn word.
 | 
			
		||||
@ -334,7 +333,17 @@ contains every possible length-$n$ subword. \par
 | 
			
		||||
In other words, show that $\mathcal{S}_n(w) = 2^n$ for a generated word $w$.
 | 
			
		||||
 | 
			
		||||
\begin{solution}
 | 
			
		||||
	TODO
 | 
			
		||||
	Any length-$n$ subword of $w$ is the concatenation of a vertex label and an edge label.
 | 
			
		||||
	By construction, the next length-$n$ subword is the concatenation of the next vertex and edge
 | 
			
		||||
	in the Eulerian cycle.
 | 
			
		||||
 | 
			
		||||
	\vspace{2mm}
 | 
			
		||||
 | 
			
		||||
	This cycle traverses each edge exactly once, so each length-$n$ subword is distinct. \par
 | 
			
		||||
	Since $w$ has length $2^n + n - 1$, there are $2^n$ total subwords. \par
 | 
			
		||||
	These are all different, so $\mathcal{S}_n \geq 2^n$. \par
 | 
			
		||||
	However, $\mathcal{S}_n \leq 2^n$ by \ref{sbounds}, so $\mathcal{S}_n = 2^n$.
 | 
			
		||||
 | 
			
		||||
\end{solution}
 | 
			
		||||
 | 
			
		||||
\vfill
 | 
			
		||||
 | 
			
		||||
		Reference in New Issue
	
	Block a user