Edits
This commit is contained in:
		| @ -17,9 +17,9 @@ For example, \texttt{11} is a subword of \texttt{011}, but \texttt{00} is not. | |||||||
|  |  | ||||||
| \definition{} | \definition{} | ||||||
| Recall \ref{lockproblem}. From now on, we'll call this the \textit{$n$-subword problem}: \par | Recall \ref{lockproblem}. From now on, we'll call this the \textit{$n$-subword problem}: \par | ||||||
| Given an alphabet $A$ and a positive integer $n$, we want a \par | Given an alphabet $A$ and a positive integer $n$, | ||||||
| word over $A$ that contains all possible length-$n$ subwords. \par | we want a word over $A$ that contains all possible length-$n$ subwords. \par | ||||||
| The shortest word that solves a given $n$-subword problem is called the \textit{optimal solution}. | That shortest word that solves a given $n$-subword problem is called the \textit{optimal solution}. | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
| @ -55,7 +55,7 @@ Find the following: | |||||||
| \vfill | \vfill | ||||||
| \pagebreak | \pagebreak | ||||||
|  |  | ||||||
| \problem{} | \problem{}<sbounds> | ||||||
| Let $w$ be a word over an alphabet of size $k$. \par | Let $w$ be a word over an alphabet of size $k$. \par | ||||||
| Prove the following: | Prove the following: | ||||||
| \begin{itemize} | \begin{itemize} | ||||||
| @ -148,7 +148,7 @@ We'll call this the \textit{Fibonacci word} of order $k$. | |||||||
| % C_k is called the "Champernowne word" of order k. | % C_k is called the "Champernowne word" of order k. | ||||||
| \problem{}<cword> | \problem{}<cword> | ||||||
| Let $C_k$ denote the word over the alphabet $\{\texttt{0}, \texttt{1}\}$ obtained by \par | Let $C_k$ denote the word over the alphabet $\{\texttt{0}, \texttt{1}\}$ obtained by \par | ||||||
| concatenating the binary representations of the integers $0,~...,~2^k -1$.\par | concatenating the binary representations of the integers $0,~...,~2^k -1$. \par | ||||||
| For example, $C_1 = \texttt{0}$, $C_2 = \texttt{011011}$, and $C_3 = \texttt{011011100101110111}$. | For example, $C_1 = \texttt{0}$, $C_2 = \texttt{011011}$, and $C_3 = \texttt{011011100101110111}$. | ||||||
| \begin{itemize} | \begin{itemize} | ||||||
| 	\item How many symbols does the word $C_k$ contain? | 	\item How many symbols does the word $C_k$ contain? | ||||||
|  | |||||||
| @ -96,11 +96,11 @@ We'll call the optimal solution to this problem a \textit{De Bruijn\footnotemark | |||||||
|  |  | ||||||
|  |  | ||||||
| \problem{}<dbbounds> | \problem{}<dbbounds> | ||||||
| Let $\mathcal{B}_n$ be the length of an order-$n$ De Bruijn word. \par | Let $w$ be the an order-$n$ De Bruijn word, and denote its length with $|w|$. \par | ||||||
| Show that the following bounds always hold: | Show that the following bounds always hold: | ||||||
| \begin{itemize} | \begin{itemize} | ||||||
| 	\item $\mathcal{B}_n \leq n2^n$ | 	\item $|w| \leq n2^n$ | ||||||
| 	\item $\mathcal{B}_n \geq 2^n + n - 1$ | 	\item $|w| \geq 2^n + n - 1$ | ||||||
| \end{itemize} | \end{itemize} | ||||||
|  |  | ||||||
| \begin{solution} | \begin{solution} | ||||||
| @ -113,7 +113,7 @@ Show that the following bounds always hold: | |||||||
|  |  | ||||||
|  |  | ||||||
| \remark{} | \remark{} | ||||||
| Now, we'd like to show that $\mathcal{B}_n = 2^n + n - 1$... \par | Now, we'd like to show that the length of a De Bruijn word is always $2^n + n - 1$... \par | ||||||
| That is, that the optimal solution to the subword problem always has $2^n + n - 1$ letters. \par | That is, that the optimal solution to the subword problem always has $2^n + n - 1$ letters. \par | ||||||
| We'll do this by construction: for a given $n$, we want to build a word with length $2^n + n - 1$ | We'll do this by construction: for a given $n$, we want to build a word with length $2^n + n - 1$ | ||||||
| that solves the binary $n$-subword problem. | that solves the binary $n$-subword problem. | ||||||
| @ -244,7 +244,7 @@ Draw $G_4$. | |||||||
| \end{solution} | \end{solution} | ||||||
|  |  | ||||||
| \vfill | \vfill | ||||||
|  | \pagebreak | ||||||
|  |  | ||||||
| \problem{} | \problem{} | ||||||
| \begin{itemize} | \begin{itemize} | ||||||
| @ -268,8 +268,6 @@ Show that $G_4$ always contains an Eulerian path. \par | |||||||
| \hint{\ref{eulerexists}} | \hint{\ref{eulerexists}} | ||||||
|  |  | ||||||
| \vfill | \vfill | ||||||
| \pagebreak |  | ||||||
|  |  | ||||||
|  |  | ||||||
| \theorem{}<dbeuler> | \theorem{}<dbeuler> | ||||||
| We can now easily construct De Bruijn words for a given $n$: \par | We can now easily construct De Bruijn words for a given $n$: \par | ||||||
| @ -310,6 +308,7 @@ Find De Bruijn words of orders $2$, $3$, and $4$. | |||||||
| \end{solution} | \end{solution} | ||||||
|  |  | ||||||
| \vfill | \vfill | ||||||
|  | \pagebreak | ||||||
|  |  | ||||||
| Let's quickly show that the process described in \ref{dbeuler} | Let's quickly show that the process described in \ref{dbeuler} | ||||||
| indeed produces a valid De Bruijn word. | indeed produces a valid De Bruijn word. | ||||||
| @ -334,7 +333,17 @@ contains every possible length-$n$ subword. \par | |||||||
| In other words, show that $\mathcal{S}_n(w) = 2^n$ for a generated word $w$. | In other words, show that $\mathcal{S}_n(w) = 2^n$ for a generated word $w$. | ||||||
|  |  | ||||||
| \begin{solution} | \begin{solution} | ||||||
| 	TODO | 	Any length-$n$ subword of $w$ is the concatenation of a vertex label and an edge label. | ||||||
|  | 	By construction, the next length-$n$ subword is the concatenation of the next vertex and edge | ||||||
|  | 	in the Eulerian cycle. | ||||||
|  |  | ||||||
|  | 	\vspace{2mm} | ||||||
|  |  | ||||||
|  | 	This cycle traverses each edge exactly once, so each length-$n$ subword is distinct. \par | ||||||
|  | 	Since $w$ has length $2^n + n - 1$, there are $2^n$ total subwords. \par | ||||||
|  | 	These are all different, so $\mathcal{S}_n \geq 2^n$. \par | ||||||
|  | 	However, $\mathcal{S}_n \leq 2^n$ by \ref{sbounds}, so $\mathcal{S}_n = 2^n$. | ||||||
|  |  | ||||||
| \end{solution} | \end{solution} | ||||||
|  |  | ||||||
| \vfill | \vfill | ||||||
|  | |||||||
		Reference in New Issue
	
	Block a user