Typos
This commit is contained in:
@ -112,7 +112,7 @@ Define $\{-2, 2\}$ in $S$.
|
||||
|
||||
\problem{}
|
||||
Let $P$ be the set of all subsets of $\mathbb{Z}^+_0$. This is called a \textit{power set}. \par
|
||||
Let $S$ be the stucture $( P ~|~ \{\subseteq\})$ \par
|
||||
Let $S$ be the structure $( P ~|~ \{\subseteq\})$ \par
|
||||
|
||||
\problempart{}
|
||||
Show that the empty set is definable in $S$. \par
|
||||
|
Reference in New Issue
Block a user